
SYBASE SQL Server
System Administration Guide

SYBASE SQL Server Release 10.0

Document ID: 32500-01-1000-03

Change Level: 3

Last Revised: June 17, 1994

Principal authorship: Server Publications Group

Document ID: 32500-01-1000

This publication pertains to SYBASE SQL Server Release 10.0 of the SYBASE
database management software and to any subsequent release until otherwise
indicated in new editions or technical notes. Information in this document is
subject to change without notice. The software described herein is furnished under
a license agreement, and it may be used or copied only in accordance with the
terms of the agreement.

Document-Back Guarantee

Sybase welcomes corrections and comments on its documents. If you mark
typographical errors, formatting errors, errors of fact, or areas that need
clarification in any Sybase user’s manual and send copies of marked-up pages to
us, we will send you a clean copy of the manual, absolutely free.

Send pages to the Publications Operations Department at the address below.
Please include your Site ID number.

Sybase, Inc.
6475 Christie Avenue
Emeryville, CA 94608
USA

(510) 922-3500
Fax (510) 922-5340

Document Orders

Customers may purchase additional copies of any document or the right to make
photocopies of documentation for their in-house use.

To order additional documents or photocopy rights, U.S. and Canadian customers
should call Customer Fulfillment at (800) 685-8225, fax (617) 229-9845.

Customers in other countries with a U.S. license agreement may contact Customer
Fulfillment via the fax number. All other international customers should contact
their Sybase subsidiary or local distributor.

Upgrades are provided only at regularly scheduled software release dates.

©Copyright Sybase, Inc., 1989, 1994. All rights reserved.

No part of this publication may be reproduced, transmitted, or translated in any
form or by any means, electronic, mechanical, manual, optical or otherwise,
without prior written permission of Sybase, Inc.

Sybase Trademarks

SYBASE, the SYBASE logo, APT-FORMS, Data Workbench, DBA Companion,
Deft, GainExposure, GainInsight, GainMomentum, SA Companion, SQL Debug,
SQL Solutions, SQR, Transact-SQL, and VQL are registered trademarks of
Sybase, Inc. Adaptable Windowing Environment, ADA Workbench, Application
Manager, Applications from Models, APT-Build, APT-Edit, APT-Execute,
APT-Library, APT-Translator, APT Workbench, Build Momentum, Camelot,
Client/Server Architecture for the Online Enterprise, Client/Server for the
Real World, Configurator, Database Analyzer, DBA Companion Application
Manager, DBA Companion Resource Manager, DB-Library, Deft Analyst,
Deft Designer, Deft Educational, Deft Professional, Deft Trial,
Developers Workbench, Easy SQR, Embedded SQL, Enterprise Builder,
Enterprise Client/Server, Enterprise Meta Server, Enterprise Modeler,
Enterprise Momentum, Gain, Insight, MAP, Maintenance Express, MethodSet,
Movedb, Navigation Server, Net-Gateway, Net-Library, Object Momentum,
OmniSQL Access Module, OmniSQL Gateway, OmniSQL Server, Open Client,
Open Client/Server Interfaces, Open Gateway, Open Server, Open Solutions,
Partnerships That Work, PC APT-Execute, PC DB-Net, PC Net Library, PostDoc,
Replication Server, Replication Server Manager, Report-Execute,
Report Workbench, Resource Manager, RW-Display Lib, RW-Library,
Secure SQL Server, Secure SQL Toolset, SQL Code Checker, SQL Edit,
SQL Edit/TPU, SQL Monitor, SQL Server, SQL Server/CFT, SQL Server/DBM,
SQL Station, SQL Toolset, SQR Developers Kit, SQR Execute, SQR Toolset,
SQR Workbench, SYBASE Client/Server Interfaces, SYBASE Gateways,
Sybase Momentum, SYBASE SQL Lifecycle, Sybase Synergy Program,
SYBASE Virtual Server Architecture, SYBASE User Workbench, System 10,
Tabular Data Stream, The Enterprise Client/Server Company, and
The Online Information Center are trademarks of Sybase, Inc.

All other company and product names used herein may be the trademarks or
registered trademarks of their respective companies.

Restricted Rights Legend

Use, duplication or disclosure by the Government is subject to restrictions set forth
in subparagraph (c)(1)(ii) of DFARS 52.227-7013 for the DOD and as set forth in
FAR 52.227-19(a)-(d) for civilian agencies.

Sybase, Inc., 6475 Christie Avenue, Emeryville, CA 94608

System Administration Guide v

Table of Contents

 Preface
Audience . xxix
How to Use this Book . xxix
Related Documents . xxx
Conventions Used in this Manual . xxxi

Formatting SQL Statements . xxxi
SQL Syntax Conventions. xxxi

Case . xxxii
Obligatory Options {You Must Choose At Least One} xxxiii
Optional Options [You Don’t Have to Choose Any]. xxxiii
Ellipsis: Do it Again (and Again)... . xxxiii
Expressions . xxxiv

If You Need Help . xxxiv

1. Overview of System Administration
Introduction . 1-1

Roles Required for System Administration Tasks 1-2
Using isql to Perform System Administration Tasks 1-2

The System Tables . 1-2
Querying the System Tables . 1-3
Changing Data in System Tables . 1-3
Keys in System Tables . 1-4

System Procedures . 1-4
Using System Procedures . 1-5
System Procedure Tables . 1-5
Creating System Procedures . 1-6

System Databases. 1-7
master Database . 1-8

Controlling Object Creation in master . 1-8
Protecting Your Server by Backing up master. 1-9

model Database . 1-9
sybsystemprocs Database. 1-10
tempdb Database . 1-11
sybsecurity Database . 1-12
pubs2 Database . 1-12

Using the Sample Database . 1-12
sybsyntax Database . 1-13

vi Table of Contents

SYBASE SQL Server Release 10.0

2. Roles in SQL Server
Introduction . 2-1
System and Security Administration Roles . 2-1

The System Administrator . 2-1
System Administrator Tasks. 2-2
System Administrator Permissions . 2-2

System Security Officer . 2-2
The Operator . 2-3

Data Ownership Roles . 2-3
Database Owner . 2-3

Database Owner Tasks . 2-4
Database Owner Permissions. 2-4

Database Object Owner . 2-4
Database Object Owner Tasks . 2-4
Database Object Owner Permissions . 2-4

Managing Roles in SQL Server . 2-5
Granting and Revoking Roles. 2-6
Turning Your Roles On and Off . 2-6
Checking for Roles . 2-7

Displaying Login Account Information . 2-7
The show_role Function . 2-7
Checking for Roles in Stored Procedures: the proc_role Function . . . 2-7

3. Managing Physical Resources
Introduction . 3-1
Commands for Managing Resources. 3-2
Considerations in Storage Management Decisions . 3-3

Recovery. 3-3
Keeping Logs on a Separate Device . 3-3
Mirroring . 3-3

Performance . 3-3
Status and Defaults at Installation Time. 3-4
The System Tables that Manage Storage . 3-4

The sysdevices Table. 3-4
The sysusages Table . 3-6
The syssegments Table . 3-6
The sysindexes Table . 3-6

Initializing Database Devices . 3-7
disk init Syntax. 3-8

disk init Examples . 3-8

System Administration Guide vii

SYBASE SQL Server Release 10.0

Specifying a Logical Device Name with disk init 3-8
Specifying a Physical Device Name with disk init 3-9
Choosing a Device Number for disk init . 3-9
Specifying the Device Size with disk init . 3-9
Optional Parameters for disk init . 3-10

Getting Information about Devices . 3-10
Dropping Devices . 3-12

Designating Default Devices . 3-12
Choosing Default and Non-Default Devices . 3-13

Disk Mirroring . 3-14
Deciding What to Mirror . 3-14
Disk Mirroring Commands. 3-16

Initializing Mirrors. 3-17
Effects on System Tables . 3-18
Unmirroring a Device . 3-18
Effects on System Tables . 3-19
Restarting Mirrors . 3-19
waitfor mirrorexit . 3-19
Mirroring the Master Device . 3-20

Creating User Databases . 3-20
create database Syntax . 3-21
How User Databases are Created. 3-22
Permissions for Creating Databases. 3-22
Assigning Databases to Database Devices . 3-23

Database Size . 3-23
Estimating the Size of Tables and Indexes . 3-24

Omitting the on Clause . 3-25
Placing the Transaction Log on a Separate Device: log on 3-25

Determining the Size of the Transaction Log 3-26
Omitting the log on Clause . 3-27

for load Option for Database Recovery. 3-27
with override Option to create database . 3-28

Moving the Transaction Log to Another Device . 3-28
Changing Database Ownership . 3-29
Increasing the Size of a Database . 3-30

alter database Syntax . 3-30
The with override Clause . 3-31
The for load Clause . 3-31

drop database Command . 3-32
How SQL Server Allocates Space for a Database. 3-32

The sysusages Table . 3-33

viii Table of Contents

SYBASE SQL Server Release 10.0

The segmap Column . 3-34
The lstart, vstart and size Columns. 3-35

Creating and Using Segments . 3-35
Commands and Procedures for Using Segments. 3-36
Creating Segments . 3-37
Creating Database Objects on Segments . 3-38
Extending Segments. 3-39
Placing Objects on a Segment . 3-40
Dropping Segments . 3-41
Getting Information about Segments . 3-41

sp_helpsegment . 3-42
sp_helpdb . 3-42

Segments and System Tables . 3-43
A Segment Tutorial . 3-44
Other Factors in Using Segments . 3-48

Segments and Clustered Indexes . 3-48
Sharing Space on Segments. 3-49
Placing Text Pages on a Separate Device. 3-49

Information on Storage . 3-50

4. Managing SQL Server Logins and Database Users
Introduction . 4-1
Adding New Users: an Overview . 4-1

Choosing a Password. 4-2
Adding Logins to SQL Server . 4-2

Effects on System Tables . 4-4
Permissions Required . 4-5

Creating Groups: sp_addgroup . 4-5
Permissions Required . 4-5
Effects on System Tables . 4-6

Adding Users to Databases: sp_adduser. 4-6
Effects on System Tables . 4-7
Permissions Required . 4-7
Adding a “guest” User. 4-7

“guest” User Permissions . 4-8
The “guest” User in User Databases . 4-8
The “guest” User in pubs2 . 4-9

Visitor Accounts on SQL Server . 4-9
Adding Remote Users . 4-9
Granting Permissions to Database Users . 4-9

System Administration Guide ix

SYBASE SQL Server Release 10.0

Dropping Logins, Users, and Groups . 4-10
Dropping Logins: sp_droplogin . 4-10
Dropping Database Users: sp_dropuser . 4-11
Dropping Groups: sp_dropgroup . 4-11

Locking SQL Server Logins: sp_locklogin. 4-11
Permissions Required . 4-12

Changing User Information . 4-12
Changing Passwords: sp_password . 4-13

Null Passwords. 4-14
Permissions Required . 4-14

Changing User Defaults with sp_modifylogin . 4-14
Examples . 4-15

Changing a User’s Group Membership: sp_changegroup 4-15
Using Aliases in Databases . 4-16

Adding Aliases: sp_addalias . 4-17
Dropping Aliases: sp_dropalias . 4-18
Getting Information on Aliases . 4-18

Getting Information on Users . 4-19
Getting Reports on SQL Server Users and Processes: sp_who 4-19
Getting Information about Login Accounts: sp_displaylogin 4-20
Getting Information about Database Users: sp_helpuser 4-20
Finding User Names and IDs . 4-21

Getting Information about Usage: Chargeback Accounting 4-22
System Procedures for Reporting Current Usage Statistics 4-22

Using sp_reportstats. 4-22
Using sp_clearstats . 4-23

Configuration Variables for Chargeback Accounting 4-23

5. Managing User Permissions
Introduction . 5-1

Permission Summary . 5-1
Types of SQL Server Users and Their Privileges . 5-4

Privileges of System Administrators . 5-5
Permissions for Creating Databases . 5-5

Privileges of System Security Officers . 5-6
Privileges of Operators . 5-6
Privileges of Database Owners . 5-6

Permissions on System Tables . 5-7
Permissions on System Procedures . 5-7
The setuser Command . 5-8
Changing Database Ownership . 5-9

x Table of Contents

SYBASE SQL Server Release 10.0

Privileges of Database Object Owners. 5-9
Privileges of Other Database Users . 5-10

Command and Object Permissions . 5-10
Granting and Revoking Permissions . 5-11

grant and revoke Syntax . 5-12
Examples: Granting and Revoking Object Permissions 5-15
Examples: Granting and Revoking Command Permissions 5-16

Combining grant and revoke Statements . 5-16
Conflicting grant and revoke Statements . 5-17

Reporting on Permissions . 5-18
sp_helprotect . 5-18
sp_column_privileges . 5-19
sp_table_privileges . 5-20

Permissions on Views and Stored Procedures . 5-20
Views as Security Mechanisms . 5-20
Stored Procedures as Security Mechanisms . 5-23

Roles and Stored Procedures . 5-23
Ownership Chains . 5-24

Ownership Chains and Views . 5-24
Ownership Chains and Stored Procedures . 5-27

Triggers. 5-28

6. Checking Database Consistency
Introduction . 6-1

Errors Generated by Database Consistency Problems 6-2
dbcc Permissions . 6-2

Page and Object Allocation Concepts . 6-2
The Object Allocation Map (OAM) . 6-5
Page Linkage . 6-7

Individual dbcc Commands . 6-7
dbcc checktable. 6-7
dbcc checkdb. 6-9
dbcc checkcatalog . 6-9
dbcc checkalloc . 6-10
dbcc tablealloc . 6-11

Correcting Allocation Errors—the fix | nofix option. 6-12
dbcc indexalloc. 6-13
dbcc dbrepair . 6-14
dbcc reindex . 6-14
dbcc fix_text. 6-14

System Administration Guide xi

SYBASE SQL Server Release 10.0

How, When, and Why to Use the dbcc Commands. 6-15
Comparing the dbcc Commands. 6-15
Scheduling Database Maintenance at Your Site . 6-16
What to Look for in dbcc Output. 6-18

7. Developing a Backup and Recovery Plan
Introduction . 7-1
Keeping Track of Database Changes . 7-2

Getting Information about the Transaction Log. 7-2
Synchronizing a Database and its Transaction Log: Checkpoints 7-3

Setting the Recovery Interval . 7-3
The Automatic Checkpoint Procedure . 7-4
Truncating the Log After Automatic Checkpoints. 7-4
Manually Requesting a Checkpoint. 7-5

Automatic Recovery After a System Failure or Shutdown . 7-5
Determining Whether Messages Are Displayed During Recovery. 7-6

Using the Dump and Load Commands . 7-6
Checking Database Consistency: dbcc . 7-6
Making Routine Database Dumps: dump database 7-7
Making Routine Transaction Log Dumps: dump transaction. 7-7
Copying the Log After Device Failure: dump tran with no_truncate. 7-7
Restoring the Entire Database: load database . 7-8
Applying Changes to the Database: load transaction 7-8
Using the Special dump transaction Options . 7-9
Using the Special Load Options to Identify Dump Files 7-9
Backup and Recovery Illustrated . 7-10

Designating Responsibility for Backups . 7-12
Using the Backup Server for Backup and Recovery. 7-12

Relationship Between SQL Server and Backup Servers 7-13
Communicating with the Backup Server . 7-15
Mounting a New Volume . 7-15

Starting and Stopping the Backup Server . 7-17
Configuring Your Server for Remote Access . 7-17
Choosing Backup Media . 7-17

Protecting Backup Tapes From Being Overwritten 7-18
Dumping to Files or Disks. 7-18

Creating Logical Device Names for Local Dump Devices. 7-18
Listing the Current Device Names. 7-19
Adding a Backup Device . 7-20
Redefining a Logical Device Name . 7-20

xii Table of Contents

SYBASE SQL Server Release 10.0

Scheduling Backups of User Databases . 7-20
Scheduling Routine Backups . 7-20
Other Times to Back Up a Database. 7-21

Dumping a Database After Creating an Index 7-21
Dumping A Database After Unlogged Operations. 7-21
Dumping a Database When the Log Has Been Truncated 7-22

Scheduling Backups of master . 7-22
Dumping master After Each Change . 7-22
Saving Scripts and System Tables. 7-23
Truncating master’s Transaction Log . 7-23

Scheduling Backups of model . 7-23
Truncating model’s Transaction Log . 7-24

Scheduling Backups of sybsystemprocs. 7-24
Gathering Backup Statistics . 7-24

8. Backing Up and Restoring User Databases
Introduction . 8-1
Dump and Load Command Syntax . 8-1
Specifying the Database and Dump Device . 8-5

Rules for Specifying Database Names . 8-5
Rules for Specifying Dump Devices . 8-6
Examples . 8-7

Specifying a Remote Backup Server . 8-8
Specifying Tape Density, Blocksize, and Capacity . 8-9

Overriding the Default Density . 8-10
Overriding the Default Blocksize . 8-11
Specifying Tape Capacity for Dump Commands 8-11

Specifying the Volume Name . 8-12
Identifying a Dump . 8-13
Specifying Additional Dump Devices: the stripe on Clause 8-15

Dumping to Multiple Devices . 8-16
Loading from Multiple Devices . 8-16
Using Fewer Devices to Load than to Dump . 8-17
Specifying the Characteristics of Individual Devices 8-17

Tape Handling Options . 8-18
Specifying Whether to Dismount the Tape . 8-19
Rewinding the Tape . 8-19
Protecting Dump Files from Being Overwritten 8-20
Reinitializing a Volume Before a Dump . 8-20
Dumping Multiple Databases to a Single Volume. 8-21

System Administration Guide xiii

SYBASE SQL Server Release 10.0

Overriding the Default Message Destination . 8-22
Getting Information About Dump Files . 8-24

Requesting Dump Header Information . 8-24
Determining the Database, Device, File Name, and Date. 8-25

Copying the Log After a Device Failure . 8-27
Truncating a Log That Is Not on a Separate Segment. 8-28
Truncating the Log In Early Development Environments . 8-29
Truncating a Log That Has No Free Space . 8-29

Dangers of Using with truncate_only and with no_log 8-30
Providing Enough Log Space . 8-30

Responding to Volume Change Requests . 8-30
sp_volchanged Syntax . 8-31
Volume Change Prompts for Dumps. 8-31
Volume Change Prompts for Loads . 8-34

Recovering a Database: Step-by-Step Instructions . 8-35
Getting a Current Dump of the Transaction Log 8-35
Examining the Device Allocations . 8-36
Dropping the Databases . 8-37
Dropping the Failed Devices. 8-38
Initializing New Devices . 8-38
Recreating the Databases. 8-38
Locking the Databases . 8-39
Loading the Database. 8-39
Loading the Transaction Logs. 8-39
Unlocking the Databases . 8-40

9. Backing Up and Restoring the System Databases
Introdutio.n . 9-1
Symptoms of a Damaged master Database . 9-1
Avoiding Volume Changes During Backup and Recovery . 9-2
Recovering the master Database . 9-2

Summary of Recovery Procedure. 9-3
Saving Copies of System Tables . 9-4
Dumping User Databases on the Master Device . 9-4
Building a New master Database . 9-4

Rebuilding Only the master Database . 9-4
Rebuilding the Entire Master Device . 9-5

Starting SQL Server in Master-Recover Mode . 9-5
Re-creating Devices Allocations for master . 9-6

Determining Which Allocations Are on the Master Device. 9-7

xiv Table of Contents

SYBASE SQL Server Release 10.0

A Simple Case: Only master Altered . 9-7
A More Complex Allocation. 9-9

Checking Your Backup Server sysservers Information. 9-11
Checking for a Running Backup Server . 9-12
Loading a Backup of master. 9-12
Restarting SQL Server in Master-Recover Mode 9-12
Re-Adding Database Devices . 9-13
Rebuilding sysusages and sysdatabases . 9-14
Checking SQL Server . 9-14
Restoring model . 9-15
Loading User Databases . 9-15
Restoring Server User IDs . 9-15
Restarting SQL Server . 9-16
Backing Up master. 9-16

Recovering the model Database . 9-17
Restoring the Generic model Database . 9-17
Restoring model from a Backup. 9-17
Restoring model with No Backup . 9-18

Recovering the sybsystemprocs Database . 9-18
Restoring sybsystemprocs with installmaster . 9-18
Restoring sybsystemprocs with load database. 9-19

10. Managing Free Space with Thresholds
Introduction . 10-1
Monitoring Free Space with the Last-Chance Threshold . 10-1

Crossing the Threshold . 10-2
Controlling How Often sp_thresholdaction Executes 10-2

Choosing Whether to Abort or Suspend Processes. 10-3
Aborting Processes . 10-3

Waking Suspended Processes . 10-4
Adding, Changing, and Deleting Thresholds . 10-4

Displaying Information About Existing Thresholds 10-5
Adding a Threshold . 10-5
Changing a Threshold . 10-6
Specifying a New Last-Chance Threshold Procedure 10-6
Dropping a Threshold . 10-7

Creating an Additional Threshold for the Log Segment . 10-7
Adding a Log Threshold at 50% of Available Space 10-7
Testing and Adjusting the New Threshold . 10-8

System Administration Guide xv

SYBASE SQL Server Release 10.0

Creating Additional Thresholds on Other Segments . 10-10
Determining Threshold Placement . 10-11

Creating Threshold Procedures. 10-12
Declaring Procedure Parameters . 10-12
Generating Error Log Messages . 10-12
Dumping the Transaction Log . 10-13
A Simple Threshold Procedure. 10-14
A More Complex Procedure . 10-14
Deciding Where to Put a Threshold Procedure 10-16

Disabling Free Space Accounting for Data Segments . 10-17
Creating a Last-Chance Threshold for Existing Databases 10-17

11. Diagnosing System Problems
Introduction . 11-1
How SQL Server Responds to System Problems . 11-1

Error Messages and Message Numbers . 11-2
Variables in Error Message Text . 11-3
Error Logging . 11-4

Error Log Format . 11-5
Severity Levels . 11-5
Levels 10 Through 18 . 11-7

Level 10: Status Information. 11-7
Level 11: Specified Database Object Not Found 11-7
Level 12: Wrong Datatype Encountered . 11-7
Level 13: User Transaction Syntax Error . 11-8
Level 14: Insufficient Permission to Execute Command 11-8
Level 15: Syntax Error in SQL Statements . 11-8
Level 16: Miscellaneous User Error . 11-8
Level 17: Insufficient Resources . 11-9
Level 18: Non-Fatal Internal Error Detected 11-9

Severity Levels 19 Through 24 . 11-9
Level 19: SQL Server Fatal Error in Resource. 11-10
Level 20: SQL Server Fatal Error in Current Process. 11-10
Level 21: SQL Server Fatal Error in Database Processes. 11-10
Level 22: SQL Server Fatal Error: Table Integrity Suspect 11-10
Level 23: SQL Server Fatal Error: Database Integrity Suspect 11-10
Level 24: Hardware Error or System Table Corruption 11-11

Reporting Errors . 11-11

xvi Table of Contents

SYBASE SQL Server Release 10.0

Backup Server Error Logging . 11-11
Killing Processes . 11-12

Using sp_lock to Examine Blocking Processes. 11-15
Shutting Down Servers . 11-15

Shutting Down SQL Server . 11-16
Shutting Down a Backup Server. 11-16

Checking for Active Dumps and Loads . 11-17
Using nowait on a Backup Server . 11-17

12. Fine-Tuning Performance and Operations
Introduction . 12-1
Tuning Queries and Stored Procedures . 12-1
The Database Options . 12-9

Listing the Database Options . 12-9
Setting the Database Options . 12-13

Monitoring SQL Server Activity . 12-14
update statistics . 12-18
Resetting the Configuration Variables . 12-19

The sysconfigures and syscurconfigs Tables . 12-20
Changing the Configuration Variables: sp_configure and reconfigure. . 12-20
The reconfigure Command . 12-23
Details on Configuration Variables . 12-24

recovery interval . 12-24
allow updates . 12-26
user connections . 12-27
memory . 12-29
If SQL Server Cannot Boot . 12-30
open databases . 12-30
locks. 12-31
open objects . 12-31
procedure cache . 12-31
fillfactor . 12-32
time slice . 12-33
database size . 12-33
tape retention . 12-34
recovery flags . 12-34
nested triggers. 12-34
devices . 12-34
remote access . 12-35
upgrade version. 12-35

System Administration Guide xvii

SYBASE SQL Server Release 10.0

default sortorder id . 12-35
default language . 12-35
language in cache . 12-36
max online engines . 12-36
cpu flush . 12-36
i/o flush . 12-36
default character set id . 12-36
stack size . 12-36
 password expiration interval . 12-37
audit queue size. 12-37
additional netmem . 12-38
default network packet size . 12-38
maximum network packet size . 12-39
Choosing Packet Sizes . 12-41
extent i/o buffers . 12-43
identity burning set factor . 12-43

Improving Performance Using Segments . 12-44
Splitting a Large Table Across Segments. 12-44

13. Locking
Introduction . 13-1
Overview of Locking . 13-1

Isolation Levels and Transactions. 13-3
Granularity of Locks . 13-5

Locking in SQL Server. 13-6
Page Locks . 13-7
Table Locks . 13-8
Demand Locks . 13-9
holdlock and Isolation Levels . 13-9

Preventing Dirty Reads . 13-10
Preventing Non-Repeatable Reads and Phantoms 13-11
Defining the Default Isolation Level . 13-12
Using the noholdlock Keyword . 13-12

Cursors and Locking . 13-12
Using the shared Keyword . 13-13

Summary of Lock Types and Lock Limits. 13-14
Configuring SQL Server’s Lock Limit. 13-15

Example of Locking . 13-16
Viewing Locks with sp_lock . 13-18
Information about Blocked Processes in sp_who 13-19

xviii Table of Contents

SYBASE SQL Server Release 10.0

Deadlocks and Concurrency in SQL Server . 13-19
Avoiding Deadlocks . 13-20

Locking and Performance of SQL Server. 13-21
Reducing Lock Contention . 13-22

14. Managing Multiprocessor Servers
Introduction . 14-1
Definitions. 14-1
Target Architecture . 14-1

SQL Server Task Management for SMP. 14-3
Configuring an SMP Environment . 14-4

Managing Engines . 14-5
Resetting the Number of Engines . 14-5
Choosing the Right Number of Engines . 14-5
Monitoring CPU Usage . 14-6

Managing Memory. 14-6
Managing Disks. 14-6
Application Design Considerations . 14-7

Concurrency . 14-7
Multiple Indexes. 14-7
Adjusting the fillfactor for create index Commands 14-7
Transaction Length. 14-7
Temporary Tables . 14-7

15. Managing Remote Servers
Managing Remote Servers . 15-2

Adding a Remote Server . 15-2
Managing Remote Server Names. 15-4
Dropping Remote Servers: sp_dropserver. 15-4
Setting Server Options: sp_serveroption . 15-5

The timeouts Option . 15-5
The net password encryption Option . 15-5

Getting Information on Servers: sp_helpserver . 15-6
Adding Remote Logins . 15-6

Mapping User’s Server IDs: sp_addremotelogin. 15-6
Mapping Remote Logins to Particular Local Names. 15-7
Mapping All Remote Logins to One Local Name 15-7
Remote Logins Keeping Remote Names. 15-8

System Administration Guide xix

SYBASE SQL Server Release 10.0

An Example of Remote User Mapping . 15-8
Password Checking for Remote Users: sp_remoteoption . 15-9
Getting Information about Remote Logins . 15-10
Configuration Variables for Remote Logins . 15-11

remote access . 15-11
remote logins . 15-12
remote sites . 15-12
remote connections . 15-12
pre-read packets . 15-12

16. Auditing
Introduction . 16-1
The Audit System . 16-1

The sybsecurity Database . 16-1
The Auditing System Procedures. 16-2
The Audit Queue . 16-2

Installing the Audit System . 16-2
Removing the Audit System . 16-3

Establishing Auditing . 16-3
Turning Auditing On and Off . 16-4
Setting the Global Audit Options: sp_auditoption. 16-4

Examples . 16-6
Auditing Users: sp_auditlogin . 16-7

Auditing a User’s Table and View Accesses 16-7
Auditing the Text of a User’s Commands . 16-8

Auditing Databases: sp_auditdatabase . 16-8
sp_auditdatabase Syntax . 16-8

Auditing Tables and Views: sp_auditobject . 16-10
Auditing Indirect References to Objects . 16-11
Examples . 16-12

Auditing Stored Procedures: sp_auditsproc . 16-13
Examples . 16-14

Adding User-Specified Records to the Audit Trail 16-15
Examples . 16-15

The Audit Trail: sysaudits . 16-16
Reading the Audit Trail . 16-18

Archiving Audit Data . 16-19
Using select into . 16-19
Using insert and select to Copy Into an Archive Table 16-20
Using a Threshold Action Procedure. 16-21

xx Table of Contents

SYBASE SQL Server Release 10.0

Recovering if sysaudits Fills Up . 16-21

17. Language, Sort Order, and Character Set Issues
Introduction . 17-1
International Language Modules . 17-1

Types of Localization Files . 17-1
 Language Module Directory Structure. 17-2

Changing Sort Orders, Languages, and Character Sets. 17-3
About Changing Character Sets . 17-4
About Changing Sort Orders . 17-4
The Steps Involved . 17-4

Preliminary Steps . 17-5
Steps to Configure Languages . 17-5
Steps to Configure Character Sets . 17-6
Steps to Configure a Sort Order . 17-6
Installing the Changes . 17-6
Setting Users’ Default Languages . 17-6
Database Dumps and Configuration Changes 17-7

If You Changed the Sort Order or Default Character Set 17-7
Recovery after Reconfiguration . 17-8
Using sp_indsuspect to Find Corrupt Indexes. 17-8
Rebuilding Indexes with dbcc reindex . 17-9
Upgrading text Data with dbcc fix_text . 17-10
Retrieving text Values After Changing Character Sets 17-11

Installing Date Strings for Unsupported Languages . 17-11
Server versus Client Side Date Interpretation . 17-12

18. Converting Character Sets Between SQL Server and Client
Introduction . 18-1
Conversion Paths Supported . 18-1

Characters that Cannot Be Converted . 18-3
Error Handling in Character Set Conversion . 18-4
Setting up the Conversion Process . 18-4

Specifying the Character Set for Utility Programs. 18-5
Controlling Character Conversion During a Session 18-6

 Display and File Character Set Command Line Options . 18-7
Setting the Display Character Set . 18-8
Setting the File Character Set . 18-8

System Administration Guide xxi

SYBASE SQL Server Release 10.0

A. Reserved Words
Transact-SQL Reserved Words . A-1
APT-SQL Keywords . A-3
SQL92 Keywords. A-4
Potential SQL92 Reserved Words . A-6

B. The System Tables
Introduction . B-1

C. The pubs2 Database
Tables in the pubs2 Database . C-1
Primary and Foreign Keys in pubs2. C-18
Other Objects in pubs2 . C-19

Rules . C-19
Defaults . C-19
View . C-19

Diagram of the pubs2 Database. C-20

D. Glossary

 Index

xxii Table of Contents

SYBASE SQL Server Release 10.0

System Administration Guide xxiii

List of Figures

Figure 3-1: The System Tables that Manage Storage ..3-5
Figure 3-2: Disk Mirroring Using Minimal Physical Disk Space..3-15
Figure 3-3: Disk Mirroring for Rapid Recovery ..3-15
Figure 3-4: Disk Mirroring: Keeping Transaction Logs on a Separate Disk............................3-16
Figure 3-5: Placing Objects on Specific Devices Using Segments...3-39
Figure 5-1: Ownership Chains and Permission Checking for Views, Case 15-25
Figure 5-2: Ownership Chains and Permission Checking for Views, Case 25-26
Figure 5-3: Ownership Chains and Permission Checking for Stored Procedures5-27
Figure 6-1: Page Management with Extents ..6-4
Figure 6-2: OAM Page and Allocation Page Pointers ..6-6
Figure 6-3: How a Newly-Allocated Page is Linked with Other Pages6-7
Figure 7-1: Restoring a Database from Backups ...7-10
Figure 7-2: Restoring a Database, a Second Scenario ...7-11
Figure 7-3: SQL Server/Backup Server Installation with a Remote Backup Server..............7-14
Figure 7-4: Changing Tape Volumes on a UNIX System ...7-16
Figure 8-1: Default File Naming Convention for Database and Transaction Log Dumps....8-14
Figure 8-2: Dumping Several Databases to the Same Volume..8-22
Figure 9-1: Allocations on a Master Device ...9-8
Figure 9-2: Complex Allocations on a Master Device ..9-10
Figure 10-1: Log Segment with a Last-Chance Threshold...10-2
Figure 10-2: Executing sp_thresholdaction when the Last-chance Threshold is Reached..........10-2
Figure 10-3: Free Space must Rise by @@thresh_hysteresis to Reactivate Threshold.................10-3
Figure 10-4: Transaction Log with Additional Threshold at 50%...10-9
Figure 10-5: Moving Threshold Leaves Less Free Space after Dump..10-9
Figure 10-6: Additional Log Threshold Doesn’t Begin Dump Early Enough10-10
Figure 10-7: Moving Threshold Leaves Enough Free Space to Complete Dump10-10
Figure 10-8: Determining Where to Place a Threshold ..10-11
Figure 12-1: The Checkpoint Process..12-25
Figure 12-2: Factors in Determining Packet Size...12-42
Figure 12-3: Splitting a Large Table Across Two Segments...12-45
Figure 13-1: Consistency Levels in Transactions...13-2
Figure 13-2: Dirty Reads in Transactions ...13-3
Figure 13-3: Non-repeatable Reads in Transactions ...13-4
Figure 13-4: Phantoms in Transactions...13-5
Figure 13-5: Avoiding Dirty Reads in Transactions..13-10
Figure 13-6: Avoiding Phantoms in Transactions ...13-11
Figure 13-7: Locking Example Between Two Transactions ...13-16
Figure 13-8: Deadlocks in Transactions ..13-20

xxiv List of Figures

 SYBASE SQL Server Release 10.0

Figure 14-1: SMP Environment Architecture...14-2
Figure 14-2: SQL Server Task Management in the SMP Environment14-4
Figure 15-1: Setting Up Servers to Allow Remote Procedure Calls ...15-2
Figure 17-1: Language Module Directory Structure...17-3
Figure 18-1: Comparison of EUC JIS and Shift-JIS Encoding for Japanese Characters...........18-3
Figure 18-2: Where Character Set Conversion May be Needed ...18-8

System Administration Guide xxv

List of Tables

Table 1: Syntax Statement Conventions..xxxi
Table 2: Types of Expressions Used in Syntax Statements .. xxxiv
Table 3-1: Commands for Allocating Physical Resources..3-2
Table 3-2: Status Bits in sysdevices ..3-11
Table 3-3: Effects of mode and side Options to disk mirror Command......................................3-19
Table 3-4: Segment Values ..3-34
Table 3-5: Default Segments...3-36
Table 3-6: Commands and Procedures for Managing Segments..3-36
Table 4-1: System Procedures for Adding Users to SQL Server and Databases.....................4-2
Table 4-2: Dropping Logins, Users, and Groups...4-10
Table 4-3: System Procedures for Changing User Information ..4-13
Table 4-4: Options for sp_modifylogin ..4-15
Table 4-5: System Procedures for Managing Aliases..4-17
Table 4-6: System Procedures that Report on SQL Server Users and Groups4-19
Table 4-7: System Functions suser_id and suser_name ...4-21
Table 4-8: System Functions user_id and user_name ..4-22
Table 5-1: Command and Object Permissions...5-2
Table 5-2: Object Permissions ..5-11
Table 5-3: Commands on Which Permissions May Be Granted ...5-11
Table 5-4: ANSI Permissions for update and delete ..5-13
Table 6-1: dbcc Commands Compared for Speed, Thoroughness, and Locking...................6-15
Table 7-1: Further Information About Backup and Recovery...7-1
Table 7-2: When to Use dump transaction with truncate_only or with no_log...............................7-9
Table 8-1: Further Information About Backup and Recovery...8-1
Table 8-2: Syntax for Routine Dumps and for Log Dumps After Device Failure8-2
Table 8-3: Syntax for the Load Commands..8-3
Table 8-4: Special dump transaction Options ...8-4
Table 8-5: Indicating the Database Name and Dump Device ...8-5
Table 8-6: Dumping to or Loading from a Remote Backup Server ..8-8
Table 8-7: Specifying Tape Density, Blocksize, and Capacity..8-10
Table 8-8: Specifying the Volume Name...8-12
Table 8-9: Specifying the File Name for a Dump ..8-13
Table 8-10: Using More Than One Dump Device ...8-16
Table 8-11: Tape Handling Options...8-19
Table 8-12: Overriding the Default Message Destination..8-23
Table 8-13: Listing Dump Headers or File Names..8-24
Table 8-14: Copying the Log After a Device Failure...8-28
Table 8-15: Sample Device Allocation...8-36

xxvi List of Tables

 SYBASE SQL Server Release 10.0

Table 9-1: Further Information About Backup and Recovery...9-1
Table 9-2: Using sysdevices to Determine disk reinit Parameters...9-13
Table 10-1: Further Information About Backup and Recovery...10-1
Table 11-1: Error Text Abbreviation Key ..11-3
Table 11-2: Status Values Reported by sp_who...11-13
Table 12-1: DDL Commands Allowed in Transactions ..12-11
Table 12-2: DDL Commands Not Allowed in Transactions ..12-11
Table 12-3: Meaning of Columns in an sp_monitor Report...12-15
Table 12-4: sp_configure Output ..12-21
Table 13-1: Summary of Locks for insert and create index Statements.....................................13-14
Table 13-2: Summary of Locks for select, update and delete Statements...................................13-15
Table 13-3: Sequence of Locks at Isolation Level 1 ...13-17
Table 13-4: Sequence of Locks at Isolation Level 1 with No Index...13-17
Table 13-5: Sequence of Locks at Isolation Level 3 ...13-18
Table 13-6: Sequence of Locks at Isolation Level 3 with No Index...13-18
Table 15-1: Configuration Variables that Affect RPCs..15-11
Table 16-1: System Procedures Used to Manage Auditing Options ..16-2
Table 16-2: Global Auditing Options ..16-5
Table 16-3: Database Auditing Options..16-9
Table 16-4: Types of Object Access ..16-11
Table 16-5: Contents and Description of event and extrainfo Columns...................................16-16
Table 16-6: Values for the eventmod Field in sysaudits ...16-17
Table 17-1: Localization Files ...17-1
Table 18-1: Character Set Conversions ...18-2
Table A-1: Transact-SQL Reserved Words .. A-1
Table A-2: APT-SQL Keywords .. A-3
Table A-3: SQL92 Keywords That Are Not Transact-SQL Reserved Words A-4
Table A-4: Potential Reserved Words .. A-6
Table B-1: System tables that occur in all databases .. B-1
Table B-2: System tables that occur in the master database only .. B-2
Table B-3: System tables that occur in the sybsecurity database only B-3
Table B-4: Columns in the sysalternates table ... B-5
Table B-5: Columns in the sysauditoptions table... B-6
Table B-6: Audit option values and descriptions ... B-6
Table B-7: Columns in the sysaudits table... B-8
Table B-8: Contents of event and extrainfo columnss of sysaudits .. B-9
Table B-9: Columns in the syscharsets table.. B-11
Table B-10: Columns in the syscolumns table ... B-13
Table B-11: Columns in the syscomments table .. B-15
Table B-12: Columns in the sysconfigures table .. B-16
Table B-13: Contents of sysconfigures... B-16

System Administration Guide xxvii

 SYBASE SQL Server Release 10.0

Table B-14: Columns in the sysconstraints table... B-18
Table B-15: Columns in the syscurconfigs table .. B-19
Table B-16: Columns in the sysdatabases table.. B-20
Table B-17: status control bits in the sysdatabases table ... B-21
Table B-18: status2 control bits in the sysdatabases table ... B-21
Table B-19: Columns in the sysdepends table.. B-22
Table B-20: Columns in the sysdevices table ... B-23
Table B-21: status control bits in the sysdevices table ... B-23
Table B-22: Columns in the sysengines table .. B-25
Table B-23: Columns in the sysindexes table... B-26
Table B-24: status2 control bits in the sysindexes table .. B-27
Table B-25: status control bits in the sysindexes table .. B-28
Table B-26: Columns in the syskeys table.. B-29
Table B-27: Columns in the syslanguages table .. B-31
Table B-28: Columns in the syslocks table... B-33
Table B-29: type control bit in the syslocks table ... B-33
Table B-30: Columns in the sysloginroles table .. B-35
Table B-31: Columns in the syslogins table... B-36
Table B-32: status control bits in the syslogins table... B-37
Table B-33: Columns in the syslogs table .. B-38
Table B-34: Columns in the sysmessages table .. B-39
Table B-35: Columns in the sysobjects table .. B-40
Table B-36: systat2 control bits in the sysobjects table.. B-41
Table B-37: Columns in the sysprocedures table ... B-42
Table B-38: type control bits in the sysprocedures table .. B-42
Table B-39: Columns in the sysprocesses table .. B-43
Table B-40: Columns in the sysprotects table .. B-45
Table B-41: Columns in the sysreferences table ... B-47
Table B-42: Columns in the sysremotelogins table .. B-49
Table B-43: Columns in the sysroles table ... B-50
Table B-44: Columns in the syssegments table.. B-51
Table B-45: Columns in the sysservers table ... B-52
Table B-46: Columns in the syssrvroles table .. B-53
Table B-47: Columns in the systhresholds table .. B-54
Table B-48: Columns in the systypes table .. B-55
Table B-49: Datatype names, hierarchy, types, and usertypes.. B-56
Table B-50: Columns in the sysusages table .. B-57
Table B-51: Columns in the sysusermessages table ... B-58
Table B-52: Columns in the sysusers table .. B-59

xxviii List of Tables

 SYBASE SQL Server Release 10.0

System Administration Guide xxix

Preface

This manual, the SYBASE SQL ServerTM System Administration Guide,
describes how to administer and control SQL ServerTM databases
independent of any specific database application.

Audience

This manual is intended for SYBASE SQL Server System
Administrators and Database Owners.

How to Use this Book

This manual contains two sections. Section I, “Basic Concepts,”
covers basic system administration issues:

• Chapter 1 describes the structure of the SYBASE system.

• Chapter 2 describes different system administration roles and
capabilities.

• Chapter 3 discusses the physical placement of databases, tables,
and indexes, and the allocation of space to them.

• Chapter 4 covers the addition and management of database
users.

• Chapter 5 describes SQL Server’s protection system and the
privileges that different users have and can be granted.

• Chapter 6 describes how to use the database consistency checker,
dbcc, to detect and fix database problems.

• Chapter 7 discusses the capabilities of the Backup Server, and
how to develop your backup strategy.

• Chapter 8 discusses how to recover user databases.

• Chapter 9 discusses how to recover system databases.

• Chapter 10 discusses managing space with thresholds.

Section II, “Special Topics,” contains information needed for special
environments or infrequently encountered situations:

• Chapter 11 discusses SQL Server and Backup Server error
handling, and shows how to shut down servers and kill user
processes.

xxx Preface

Related Documents SYBASE SQL Server Release 10.0

• Chapter 12 describes how to configure SQL Server for the best
performance.

• Chapter 13 describes how SQL Server locks database pages and
objects, and presents strategies for reducing lock contention.

• Chapter 14 discusses system administration issues unique to
symmetric multiprocessor environments.

• Chapter 15 covers management of remote servers and remote
users.

• Chapter 16 describes auditing on SQL Server.

• Chapter 17 discusses international issues, such as the files
included in the Language Modules and how to change
SQL Server’s language, sort order, or character set.

• Chapter 18 discusses character set conversion between
SQL Server and clients in a heterogeneous environment.

• Appendix A, “Reserved Words”, lists Transact-SQL reserved
words, and includes a list of words that may be used as keywords
in SQL 92 implementations.

• Appendix B, ‘‘The System Tables’’ lists each system table and the
definition of all columns in each table. A pull-out entity
relationship diagram is included at the back of the book.

• Appendix C, ‘‘The pubs2 Database’’ describes the pubs2 database
in detail. Also included is an entity relationship diagram of all the
tables in pubs2.

• Appendix D is a glossary of terms used in this book that relate to
system administration and database management issues.

Related Documents

Other manuals you may find useful are:

• SQL Server Reference Manual, which contains detailed
information on all of the commands and system procedures
discussed in this manual.

• SQL Server Utility Programs, which documents the SYBASE utility
programs such as isql and bcp which are executed from the
operating system level.

• System Administration Guide Supplement, which documents
operating-system-specific system administration tasks.

System Administration Guide xxxi

SYBASE SQL Server Release 10.0 Conventions Used in this Manual

• Transact-SQL User’s Guide, which documents Transact-SQL,
Sybase’s enhanced version of the relational database language. It
serves as a textbook for beginning users of the SYBASE database
management system.

• SQL Server Installation Guide, which describes the installation
procedures for SQL Server.

• Master Index for Server Publications, which combines the indexes of
the SQL Server Reference Manual, Transact-SQL User’s Guide, and
System Administration Guide. Use it to locate various topics in
different contexts throughout the SYBASE documentation.

• What’s New in Sybase SQL Server Release 10.0? , which describes
the new features in Release 10.0.

Conventions Used in this Manual

Formatting SQL Statements

SQL is a free-form language: there are no rules about the number of
words you can put on a line, or where you must break a line.
However, for readability, all examples and syntax statements in this
manual are formatted so that each clause of a statement begins on a
new line. Clauses that have more than one part extend to additional
lines, which are indented.

SQL Syntax Conventions

The conventions for syntax statements in this manual are as follows:

Key Definition

command Command names, command option names, utility
names, utility flags, and other keywords are in
bold Courier in syntax statements, and in bold
Helvetica in paragraph text.

variable Variables, or words that stand for values that you fill
in, are in italics.

{ } Curly braces indicate that you choose at least one of
the enclosed options. Do not include braces in your
option.

Table 1: Syntax Statement Conventions

xxxii Preface

Conventions Used in this Manual SYBASE SQL Server Release 10.0

• Syntax statements (displaying the syntax and all options for a
command) are printed like this:

sp_dropdevice [device_name]

or, for a command with more options:

selec t column_name
from table_name
where search_conditions

In syntax statements, keywords (commands) are in normal font
and identifiers are in lowercase: normal font for keywords, italics
for user-supplied words.

• Examples showing the use of Transact-SQL commands are
printed like this:

select * from publishers

• Examples of output from the computer are printed like this:

pub_id pub_name city state
------- ------------------- ----------- -----
0736 New Age Books Boston MA
0877 Binnet & Hardley Washington DC
1389 Algodata Infosystems Berkeley CA

(3 rows affected)

Case

You can disregard case when you type keywords:

SELECT is the same as Select is the same as select

[] Brackets mean choosing one or more of the enclosed
options is optional. Do not include brackets in your
option.

() Parentheses are to be typed as part of the command.

| The vertical bar means you may select only one of
the options shown.

, The comma means you may choose as many of the
options shown as you like, separating your choices
with commas to be typed as part of the command.

Key Definition

Table 1: Syntax Statement Conventions (continued)

System Administration Guide xxxiii

SYBASE SQL Server Release 10.0 Conventions Used in this Manual

Obligatory Options {You Must Choose At Least One}

• Curly Braces and Vertical Bars: Choose one and only one option.

{die_on_your_feet | live_on_your_knees |
live_on_your_feet}

• Curly Braces and Commas: Choose one or more options. If you
choose more than one, separate your choices with commas.

{cash, check, credit}

Optional Options [You Don’t Have to Choose Any]

• One Item in Square Brackets: You don’t have to choose it.

[anchovies]

• Square Brackets and Vertical Bars: Choose none or only one.

[beans | rice | sweet_potatoes]

• Square Brackets and Commas: Choose none, one, or more than
one option. If you choose more than one, separate your choices
with commas.

[extra_cheese, avocados, sour_cream]

Ellipsis: Do it Again (and Again)...

An ellipsis (three dots) means that you can repeat the last unit as
many times as you like. In this syntax statement, buy is a required
keyword:

buy thing = price [cash | check | credit]
 [, thing = price [cash | check | credit]]...

You must buy at least one thing and give its price. You may choose a
method of payment: one of the items enclosed in square brackets.
You may also choose to buy additional things: as many of them as
you like. For each thing you buy, give its name, its price, and
(optionally) a method of payment.

xxxiv Preface

If You Need Help SYBASE SQL Server Release 10.0

Expressions

Several different types of expressions are used in SQL Server syntax
statements.

If You Need Help

Help with your SYBASE software is available in the form of
documentation and the Technical Support Center.

Each SYBASE installation has a designated person who may contact
Technical Support. If you cannot resolve your problem using the
manuals, ask the designated person at your site to contact Sybase
Technical Support.

Usage Definition

expression Can include constants, literals, functions,
column identifiers, variables, or parameters

logical expression An expression that returns TRUE, FALSE, or
UNKNOWN

constant expression An expression that always returns the same
value, such as “5+3” or “ABCDE”

float_expr Any floating-point expression or expression
that implicitly converts to a floating value

integer_expr Any integer expression, or an expression that
implicitly converts to an integer value

numeric_expr Any numeric expression that returns a single
value

char_expr An expression that returns a single character-
type value

binary_expression An expression that returns a single binary or
varbinary value

Table 2: Types of Expressions Used in Syntax Statements

Basic Concepts

System Administration Guide 1-1

1. Overview of System Administration1
Introduction

Administering SQL Server databases includes tasks such as:

• Installing SQL Server and Backup Server

• Granting roles and permissions to SQL Server users

• Managing and monitoring the use of disk space, memory, and
connections

• Backing up and restoring databases

• Diagnosing system problems

• Fine-tuning SQL Server to achieve the best performance

In addition, System Administrators may have a hand in certain
database design tasks, such as enforcing integrity standards. This
function may overlap with the work of application designers.

Although a System Administrator concentrates on tasks that are
independent of the applications running on SQL Server, she or he is
likely to be the person with the best overview of all the applications.
For this reason, a System Administrator can advise application
designers about the data that already exists on the SQL Server, make
recommendations about standardizing data definitions across
applications, and so on.

The System Administration Guide is concerned with physical storage
issues, backup and recovery, fine-tuning SQL Server, and so on.
Functions specific to an application—data definition and
maintaining referential integrity—are covered in other manuals.
Installation of SQL Server is covered in the SYBASE SQL Server
Installation Guide.

However, the distinction between what is and what is not specific to
an application is sometimes a bit fuzzy. Owners of user databases
will consult certain sections of this book. Similarly, System
Administrators and Database Owners will use the Transact-SQL
User’s Guide (especially the chapters on data definition, stored
procedures, and triggers).

The roles of the System Administrator, the Database Owner, and
other users of SQL Server are further discussed in Chapter 2, ‘‘Roles
in SQL Server’’.

1-2 Overview of System Administration

The System Tables SYBASE SQL Server Release 10.0

Roles Required for System Administration Tasks

Many of the commands and procedures discussed in this document
require you to be a System Administrator or System Security Officer.
These special SQL Server roles are discussed in Chapter 2, ‘‘Roles in
SQL Server’’.

Other sections of this document are relevant to Database Owners. A
Database Owner’s username within the database is “dbo.” You
cannot log in as “dbo”: a Database Owner logs in under his or her
SQL Server login name, and is recognized as “dbo” by SQL Server
only while using his or her database.

Using isql to Perform System Administration Tasks

Nearly all of the system administration tasks described in this guide
require you as a System Administrator to connect to SQL Server with
the utility isql. For more information about isql, see the SQL Server
Utility Programs manual.

The System Tables

The master database contains system tables that keep track of
information about SQL Server as a whole. In addition, each database
(including the master database) contains system tables that keep
track of information specific to that database.

All of the SQL Server-supplied tables in the master database (SQL
Server’s controlling database) are considered system tables. In
addition, each user database is created with a subset of these system
tables. The system tables may also be referred to as the data
dictionary or the system catalogs.

A master database and its tables are created when you install SQL
Server. The system tables in a user database are automatically
created when the create database command is issued. The names of all
system tables start with “sys”. An explanation of the system tables
and their columns is included in Appendix B, ‘‘The System Tables’’.
Some of the system tables are discussed in detail in later chapters.

System Administration Guide 1-3

SYBASE SQL Server Release 10.0 The System Tables

Querying the System Tables

You can query the system tables just like any other tables. For
example, here’s a statement that returns the names of all the triggers
in the database:

select name
from sysobjects
where type = "TR"

In addition, SQL Server supplies stored procedures (called system
procedures), many of which provide shortcuts for querying the
system tables.

These system procedures provide information from the system
tables:

For complete information on the system procedures, see the SQL
Server Reference Manual, Volume 2.

Changing Data in System Tables

SQL Server’s system tables contain information critical to the
operation of your databases. Data in these tables is inserted,
updated, or deleted by Transact-SQL commands (such as create or
drop commands) or by system procedures. Under ordinary
circumstances, you do not need to perform direct data modifications
to system tables.

Generally, you should update these tables only when:

• You are instructed to do so by Technical Support, or

• Instructions in the SYBASE Troubleshooting Guide or this guide
instruct you to update a system table.

If you must update system tables, you must issue an sp_configure
command that enables system table updates. While this command is

sp_commonkey
sp_configure
sp_dboption
sp_estspace
sp_help
sp_helpconstraint
sp_helpdb
sp_helpdevice
sp_helpgroup

sp_helpindex
sp_helpjoins
sp_helpkey
sp_helplanguage
sp_helplog
sp_helpremotelogin
sp_helprotect
sp_helpsegment
sp_helpserver

sp_helpsort
sp_helptext
sp_helpthreshold
sp_helpuser
sp_lock
sp_monitor
sp_spaceused
sp_who

1-4 Overview of System Administration

System Procedures SYBASE SQL Server Release 10.0

in effect, any user with appropriate permission could modify a
system table. Other guidelines for direct changes to system tables
are:

• Modify system tables only inside a transaction. Issue a begin
transaction command before you issue the data modification
command.

• Check to see that only the rows you wished to change were
affected by the command, and that the data was changed
correctly.

• If the command was incorrect, issue a rollback transaction command.
If the command was correct, use commit transaction.

◆ WARNING!
Some system tables should not be altered by any user under any
circumstances. Some system tables are built dynamically by system
processes, contain encoded information, or display only a portion of their
data when queried. Imprudent ad hoc updates to certain system tables
can make SQL Server unable to run, make database objects inaccessible,
scramble permissions on objects, or terminate your user session.

Keys in System Tables

Primary, foreign, and common keys for the system tables have been
defined in the master and model databases (the database used as a
template for creating user databases). A report on defined keys is
available by executing the system procedure sp_helpkey. For a report
on columns in two system tables that are likely join candidates,
execute sp_helpjoins. The system tables diagram included at the end of
this book shows the relationships between columns in the system
tables.

System Procedures

The names of all the system procedures begin with sp_. They are
located in the sybsystemprocs database, but many of them can be run
from any database.

Except for system procedures that update only tables in master, if a
system procedure is executed in a database other than
sybsystemprocs, it operates on the system tables in the database from

System Administration Guide 1-5

SYBASE SQL Server Release 10.0 System Procedures

which it was executed. For example, if the Database Owner of pubs2
runs sp_adduser from pubs2, the new user is added to pubs2..sysusers.

Permissions on the system procedures are discussed in Chapter 5,
‘‘Managing User Permissions’’, and in the SQL Server Reference
Manual, Volume 2.

Using System Procedures

If a parameter value for a system procedure contains reserved words,
punctuation, or embedded blanks, it must be enclosed in single or
double quotes. If the parameter is an object name and the object
name is qualified by a database name or owner name, the entire
name must be enclosed in single or double quotes.

System procedures can be invoked by sessions using either chained
or unchained transaction modes. However, the system procedures
that modify data in master’s system tables cannot be executed from
within a transaction, since this could comprise recovery. The system
procedures that create temporary work tables cannot be run from
transactions.

If no transaction is active when you execute system procedures,
SQL Server turns off chained mode and sets transaction isolation level 1
for the duration of the procedure. Before returning, the session’s
chained mode and isolation level are reset to their original settings.
For more information about transaction modes and isolation levels,
see Volume 1 of the SQL Server Reference Manual.

All system procedures report a return status. For example:

return status = 0

means that the procedure executed successfully.

System Procedure Tables

The system procedures use several system procedure tables in the
master database to convert internal system values (for example,
status bits) into human-readable format. One of them, spt_values, is
used by a wide variety of system procedures including sp_configure,
sp_dboption, sp_depends, sp_help, sp_helpdb, sp_helpdevice, sp_helpindex,
sp_helpkey, sp_helprotect, and sp_lock.

The table spt_values is only updated by upgrade; you should never
modify it. To see how it is used, execute sp_helptext to look at the text
for one of the system procedures that references it.

1-6 Overview of System Administration

System Procedures SYBASE SQL Server Release 10.0

The other system procedure tables include spt_monitor and
spt_committab and tables needed by the Catalog Procedures. In
addition, several of the system procedures create and then drop
temporary tables. For example, sp_helpdb creates #spdbdesc;
sp_helpdevice creates #spdevtab; and sp_helpindex creates #spindtab.

Creating System Procedures

Many of the system procedures are explained in this manual, in
sections to which they are relevant. The SQL Server Reference Manual,
Volume 2 lists and describes all of them.

System Administrators can write system procedures that can be
executed from any database. Simply create a stored procedure in
sybsystemprocs and give it a name that begins with sp_. The uid of the
stored procedure must be 1, the uid of the Database Owner.

Most of the system procedures that you create yourself will query the
system tables. You can also create stored procedures that modify the
system tables, although this is not recommended.

To create a stored procedure that modifies system tables, a System
Security Officer must first turn on the allow updates configuration
variable. Any stored procedure created while this variable is set on
will always be able to update system tables, even when allow updates
is turned off. Here’s how you’d create a stored procedure that
updates the system tables:

• Issue sp_configure and reconfigure with override so that direct updates
to system tables are allowed (see Chapter 12, ‘‘Fine-Tuning
Performance and Operations’’).

• Create the stored procedure with the create procedure command.

• Issue sp_configure and reconfigure again, to disallow direct updates
to system tables.

◆ WARNING!
Use extreme caution if you must modify system tables. Test procedures
that modify system tables in development or test databases, not in your
production database.

System Administration Guide 1-7

SYBASE SQL Server Release 10.0 System Databases

System Databases

When you install SQL Server, it has these system databases:

• The master database

• The model database

• The system procedure database, sybsystemprocs

• The temporary database, tempdb

You can optionally install:

• The auditing database, sybsecurity. Use sybinit to install this
database.

• The sample database, pubs2, by using isql and the installpubs2
script.

• The sybsyntax database. See the System Administration Guide
Supplement for your platform for more information on sybsyntax.

The master, model, and temporary databases all reside on the device
named during installation, which is known as d_master. The master
database is contained entirely on the master device and cannot be
expanded onto any other device. All other databases and user objects
should be created on other devices.

The sybsecurity database should be installed on its own device and
segment. (This is discussed in the Secure SQL Server Installation
Guide.)

The sybsystemprocs database can be installed on a device of your
choice. You may wish to modify the installpubs2 script and the scripts
that install the sybsyntax database to share the device you created for
sybsystemprocs.

➤ Note
The installpubs2 script does not specify a device in its create database statement,

so it will be created on the default device. At installation time, the master device

is the default device. To change this you can edit the script or follow directions

later in this document for adding more database devices and designating

default devices.

1-8 Overview of System Administration

System Databases SYBASE SQL Server Release 10.0

master Database

The master database (master) controls the user databases and the
operation of SQL Server as a whole. It keeps track of:

• User accounts (in syslogins)

• Remote user accounts (in sysremotelogins)

• Remote servers that this server can interact with (in sysservers)

• Ongoing processes (in sysprocesses)

• The configurable environment variables (in sysconfigures)

• System error messages (in sysmessages)

• The databases on SQL Server (in sysdatabases)

• The storage space allocated to each database (in sysusages)

• The tapes and disks mounted on the system (in sysdevices)

• The active locks (in syslocks)

• Character sets (in syscharsets) and languages (in syslanguages)

• Users who hold server-wide roles (in sysloginroles)

• Server roles (in syssrvroles)

• SQL Server engines online (in sysengines)

You must be in the master database in order to issue the create or alter
database, disk init, disk refit, disk reinit and the disk mirroring commands.

Controlling Object Creation in master

When you first install SQL Server, only System Administrators can
create objects in the master database, because they implicitly become
“dbo” of any database they use. It is not a good idea to routinely add
user objects to the master database device. Any objects created on the
master database device should be used for the administration of the
system as a whole. Permissions in master should remain set so that
most users cannot create objects there.

Another way to discourage users from creating objects in master is to
change users’ default databases (the database to which the user is
connected when he or she logs in) with the system procedure
sp_modifylogin. This procedure is discussed in Chapter 4, ‘‘Managing
SQL Server Logins and Database Users’’.

If you create system procedures, create them in the sybsystemprocs
database, rather than in master.

System Administration Guide 1-9

SYBASE SQL Server Release 10.0 System Databases

Protecting Your Server by Backing up master

To be prepared for hardware or software failure on your server, the
two most important housekeeping tasks are:

• Performing frequent backups of the master database (as well as all
of your user databases).

➤ Note
Back up the master database with dump database each time you create, alter or

drop any device, database, or database object, and each time you execute a

stored procedure that changes it. See Chapter 9, ‘‘Backing Up and Restoring

the System Databases’’.)

• Keeping a copy (preferably off-line) of these system tables:
sysusages, sysdatabases, sysdevices, sysloginroles and syslogins. You
may want to create a script to perform these commands:

select * from sysusages order by vstart

select * from sysdatabases

select * from sysdevices

select * from sysloginroles

select * from syslogins

If you have copies of these scripts, and a hard disk crash or other
disaster makes your database unusable, you will be able to use
the recovery procedures described in Chapter 9, ‘‘Backing Up
and Restoring the System Databases’’. If you do not have current
copies of this information, full recovery of your SQL Server
becomes much more difficult after damage to the master
database.

model Database

The model database is also supplied with SQL Server. It provides a
template or prototype for new user databases. Each time the create
database command is issued, SQL Server makes a copy of the model
database, and then extends the new database to the size requested in
the create database command.

➤ Note
A new database can never be smaller than the model database.

1-10 Overview of System Administration

System Databases SYBASE SQL Server Release 10.0

The model database contains the system tables required for each user
database. It can be modified to customize the structure of newly
created databases—everything you do to model will be reflected in
each new database. Here are some of the changes that are commonly
made to model:

• Adding user-defined datatypes, rules, or defaults.

• Adding users who are to be given access to all databases on SQL
Server.

• Granting default privileges, particularly for guest accounts

• Setting database options such as select into/bulkcopy. The setting of
options will be reflected in all new databases. Their original value
in model is “off”. Database options are described in Chapter 12,
‘‘Fine-Tuning Performance and Operations’’.

Typically, most users are not granted permission to modify the model
database. There isn’t much point in granting read permission either,
since its entire contents are copied into each new user database.

The size of model cannot be larger than the size of tempdb. SQL Server
displays an error message if you try to increase the size of model
without making tempdb at least as large.

➤ Note
Keep a backup copy of the model database and back up model with dump
database each time you change it. In case of media failure, restore model as you

would a user database.

sybsystemprocs Database

SYBASE system procedures are stored in the database sybsystemprocs.
When a user in any database executes any stored procedure that
starts with the characters “sp_”, SQL Server first looks for that
procedure in user’s current database. If there is no procedure there
with that name, SQL Server looks for it in sybsystemprocs. If there’s no
procedure in sybsystemprocs by that name, SQL Server looks for the
procedure in master.

If the procedure modifies system tables (for example, sp_adduser
modifies the sysusers table), the changes are made in the database
from which the procedure was executed.

System Administration Guide 1-11

SYBASE SQL Server Release 10.0 System Databases

To change the default permissions on system procedures, you must
modify these permissions in sybsystemprocs.

➤ Note
If you make changes to sybsystemprocs or add your own stored procedures to

the database, you should backup the database regularly.

tempdb Database

SQL Server has a temporary database, tempdb. It provides a storage
area for temporary tables and other temporary working storage
needs (for example, intermediate results of group by and order by). The
space in tempdb is shared among all users of all databases on the
server.

Create temporary tables either by preceding the table name in a create
table statement with a pound sign (#), or by specifying the name prefix
“tempdb..”.

Temporary tables created with a pound sign are accessible only by the
current SQL Server session: users on other sessions cannot access
them. These non-sharable temporary tables are destroyed at the end
of the current session. The first 13 bytes of the table’s name, including
the pound sign (#), must be unique. SQL Server assigns the names of
such tables a 17-byte number suffix. (You can see the suffix when you
query tempdb..sysobjects.)

Temporary tables created with the “tempdb..” prefix are stored in
tempdb and can be shared among SQL Server sessions. SQL Server
does not change the names of temporary tables created this way. The
table exists either until you reboot SQL Server, or until its owner drops
it using drop table.

System procedures (for example, sp_help) work on temporary tables,
but only if you use them from tempdb.

If a stored procedure creates temporary tables, the tables are dropped
when the procedure exits. Temporary tables can also be dropped
explicitly before a session ends.

Each time you reboot SQL Server, it copies model to tempdb, clearing
the database. Temporary tables are not recoverable.

1-12 Overview of System Administration

System Databases SYBASE SQL Server Release 10.0

The default size of tempdb is 2 megabytes. Certain activities may
make it necessary to increase the size of tempdb. The most common of
these are:

• Large temporary tables.

• A lot of activity on temporary tables (which fills up tempdb’s logs).

• Large sorts, or many simultaneous sorts. Subqueries and
aggregates with group by also cause some activity in tempdb.

You can increase the size of tempdb with the alter database command.
tempdb is initially created on the master device. Additional space can
be added on the master device or on any other database device.

No special permissions are required to use tempdb—that is, to create
temporary tables or to execute commands that may require storage
space in the temporary database.

sybsecurity Database

The sybsecurity database contains the audit system for SQL Server. It
consists of:

• The sysaudits table, which contains the audit trail. All audit
records are written into sysaudits.

• The sysauditoptions table, which contains rows describing the
global audit options.

• All of the other default system tables, derived from model.

The audit system is discussed in Chapter 16, ‘‘Auditing’’.

pubs2 Database

Installing the sample database (pubs2) is optional. Provided as a
learning tool, pubs2 is the basis of most of the examples in the SQL
Server document set. The sample database is illustrated in Appendix
C, ‘‘The pubs2 Database’’.

Using the Sample Database

Many of the examples in the SQL Server documentation set are based
on pubs2. See the System Administration Guide Supplement for your
platform for information about installing pubs2.

The sample database contains a guest user mechanism that allows
any authorized SQL Server user to access it. The guest user has been

System Administration Guide 1-13

SYBASE SQL Server Release 10.0 System Databases

given a fairly wide range of privileges in pubs2, including permission
to select, insert, update, and delete all the user tables. For more on the
guest user mechanism, and a list of the guest permissions in pubs2,
see Chapter 4, ‘‘Managing SQL Server Logins and Database Users’’.

If possible, each new user should be given a clean copy of pubs2 so
that she or he won’t become confused by changes made by other
users. pubs2 requires 2 megabytes. If you want it to be created on a
specific database device, edit the pubs2 database installation script.

If space is a problem, you could instruct users to issue the begin
transaction command before updating the sample database. After the
user is finished updating, he or she can issue the rollback transaction
command in order to undo the changes.

sybsyntax Database

The syntax database, sybsyntax, contains the syntax of commands
and language libraries for SYBASE products. Users can retrieve this
information using the system procedure sp_syntax. There are separate
installation scripts for different SYBASE products.

See the System Administration Guide Supplement for your platform for
information about installing this database.

1-14 Overview of System Administration

System Databases SYBASE SQL Server Release 10.0

System Administration Guide 2-1

2. Roles in SQL Server

Introduction

In SQL Server users can be granted special operational and
administrative roles. Roles provide individual accountability for
users performing system administration and security-related tasks.
Roles are granted to individual server login accounts, and actions
performed by these users can be audited and attributed to them.

These users gain their special status by being granted their roles with
the sp_role command. These roles are:

• The System Administrator

• The System Security Officer

• The Operator

In addition, there are two kinds of object owners, who gain special
status because of the objects they own. These ownership types are:

• The owner of a user database

• The owner of database objects

All of these are discussed in the following sections.

System and Security Administration Roles

The System Administrator, System Security Officer, and Operator
roles are essential for managing SQL Server.

These roles are granted to individual users with the sp_role command.
See ‘‘Granting and Revoking Roles’’ on page 2-6 for more
information.

More than one login account on a SQL Server can be granted any
role, and one account can possess more than one role.

The System Administrator

A System Administrator performs administrative tasks unrelated to
specific applications. The System Administrator is not necessarily
one individual; the role can be granted to any number of individual
login accounts. In a large organization, the System Administrator’s
role may be carried out by several people or groups. It is important,

2

2-2 Roles in SQL Server

System and Security Administration Roles SYBASE SQL Server Release 10.0

however, that the System Administrator’s functions be centralized or
very well coordinated.

System Administrator Tasks

System Administrator tasks include:

• Installing SQL Server

• Managing disk storage

• Granting permissions to SQL Server users

• Transferring bulk data between SQL Server and other software
programs

• Modifying, dropping, and locking server login accounts

• Monitoring SQL Server’s automatic recovery procedure

• Diagnosing system problems and reporting them as appropriate

• Fine-tuning SQL Server by changing the configurable system
parameters

• Creating user databases and granting ownership of them

• Granting and revoking the System Administrator role

• Setting up groups (which are convenient in granting and
revoking permissions)

System Administrator Permissions

A System Administrator operates outside the object and command
protection system—SQL Server does no permission checking when
this user accesses objects. A System Administrator takes on the
identity of Database Owner in any database he or she enters,
including master, by assuming the user ID 1.

There are several commands and system procedures that only a
System Administrator can issue, and on which permissions cannot
be transferred to other users. For detailed information on System
Administrator permissions, see Chapter 5, ‘‘Managing User
Permissions’’.

System Security Officer

The System Security Officer is responsible for security-sensitive tasks
in SQL Server, such as:

• Creating server login accounts

System Administration Guide 2-3

SYBASE SQL Server Release 10.0 Data Ownership Roles

• Granting and revoking the System Security Officer and Operator
roles

• Changing the password of any account

• Setting the password expiration interval

• Managing the audit system

The System Security Officer has no special permissions on database
objects, except in the sysaudits database where only a System Security
Officer can access the sysaudits table. There are also several system
procedures that only a System Security Officer can execute and on
which permissions cannot be transferred to other users.

The Operator

An operator is a user who can back up and load databases on a
server-wide basis. The Operator role allows a single user to use the
dump database, dump transaction, load database, and load transaction
commands to back up and restore all databases on a server without
having to be the owner of each one. These operations can be
performed in a single database by the Database Owner and the
System Administrator.

Data Ownership Roles

There are two types of owners recognized by SQL Server:

• Database Owners

• Database Object Owners

Database Owner

The Database Owner is the creator of a database or someone to
whom database ownership has been transferred. The System
Administrator grants users the authority to create databases with the
grant command.

A Database Owner logs into SQL Server using his or her assigned
login name and password. In other databases, that owner is known
by his or her regular user name; in his or her own database SQL
Server recognizes the user as “dbo.” When SQL Server is installed,
the “sa” login is the Database Owner of the master database.

2-4 Roles in SQL Server

Data Ownership Roles SYBASE SQL Server Release 10.0

Database Owner Tasks

The owner of a database may:

• Run the system procedure sp_adduser to allow other SQL Server
users access to the database

• grant other users permission to create objects and execute
commands within the database

These tasks are discussed in Chapter 4, ‘‘Managing SQL Server
Logins and Database Users’’.

Database Owner Permissions

The Database Owner has full permissions on objects inside the
database that he or she owns.

Database Object Owner

Database objects are tables, indexes, views, defaults, triggers, rules
constraints and procedures. A user who creates a database object is
its owner. The Database Owner must first grant the user permission
to create the particular type of object. There are no special login
names or passwords for database object owners.

Database Object Owner Tasks

The database object owner creates an object using the appropriate
create statement, and then grants permission to other users.

Database Object Owner Permissions

The creator of a database object is automatically granted all
permissions on it. System Administrators also have all permissions
on the object, as long as they qualify the object name with the
owner’s name (for example, fred.table2). The owner of an object must
explicitly grant permissions to other users before they can access it.
Even the Database Owner cannot use an object directly unless the
object owner grants him or her the appropriate permission.
However, the Database Owner can always use the setuser command
to impersonate any other user in the database.

System Administration Guide 2-5

SYBASE SQL Server Release 10.0 Managing Roles in SQL Server

➤ Note
When a database object is owned by someone other than the Database Owner,

the user (including a System Administrator) must qualify the name of that object

with the object owner’s name—ownername.objectname—to access the object.

If an object or a procedure needs to be accessed by a large number of users,

particularly in ad hoc queries, having these objects owned by “dbo” greatly

simplifies access.

Managing Roles in SQL Server

When it is installed, SQL Server includes an account called “sa” that
is automatically granted the System Administrator, System Security
Officer, and Operator roles during installation. The “sa” user is the
Database Owner of the system databases. There are two ways to go
from here:

• You can use the “sa” account to perform all system
administration and security-related functions. Any user who
knows the “sa” password can use the account, and any actions
performed can only be traced to “sa”; it is not possible to
determine the individual user who was logged in as “sa”.

• To increase accountability:

- After installing SQL Server, use the “sa” account to create new
server logins for users who are to be granted the System
Administrator and System Security Officer roles.

- Still logged in as “sa”, grant the correct roles to these users
using sp_role.

- A user who has been granted the System Security Officer role
can then log into his or her own account, lock the “sa” account
(using sp_locklogin), and create logins for other server users
(using sp_addlogin).

➤ Note
If you decide to lock the “sa” account, be sure to check all scripts that may

contain the “sa” login name and password. These can include scripts that

perform backups, run bcp, or perform dbcc checking. The scripts cannot run if

they are meant to run as “sa” and that account is locked. Change the logins in

those scripts to the name of a user with the correct role.

2-6 Roles in SQL Server

Managing Roles in SQL Server SYBASE SQL Server Release 10.0

Granting and Revoking Roles

The System Security Officer can grant the System Security Officer
and Operator roles to other users, and the System Administrator can
grant the System Administrator role. This is done with the sp_role
system procedure. The syntax is:

sp_role {"grant" | "revoke"},
{sa_role | sso_role | oper_role}, login_name

grant and revoke specify whether you are granting or revoking the role.

The roles are sa_role, sso_role, or oper_role. Only one role can be
specified in each execution of sp_role.

login_name is the name of the user to whom the role is being granted
or revoked.

For example, this command:

sp_role "grant", sa_role, arthur

grants the role of System Administrator to “arthur”.

When you grant a role to a user, it takes effect the next time the user
logs into SQL Server. However, the user can immediately enable the
role by using the set role command. For example, this command:

set role "sa_role" on

immediately enables the System Administrator role for the user.

You cannot revoke a role from a user while the user is logged in.

You cannot lock or drop the last remaining System Security Officer’s
or System Administrator’s account. The system procedures
sp_droplogin, sp_locklogin, and sp_role ensure that there is always at least
one unlocked login that possesses the System Security Officer role,
and one that possesses the System Administrator role.

Turning Your Roles On and Off

When you log into SQL Server, all roles granted to you are
automatically enabled. Use the role option of the set command to turn
any of your roles off or back on again for your current session. The
syntax is:

set role "{sa_role | sso_role | oper_role}" {on | off}

This can be useful if, for example, you have been granted the System
Administrator role, which means that you assume the identity of

System Administration Guide 2-7

SYBASE SQL Server Release 10.0 Managing Roles in SQL Server

Database Owner within any database that you use. If you wish to
assume your “real” user identity, execute this command:

set role "sa_role" off

If you are granted a role during a session and wish to activate it
immediately, use set role to turn it on.

Checking for Roles

The following sections describe commands and procedures that
allow you to check roles granted to yourself or others.

Displaying Login Account Information

You can use the sp_displaylogin system procedure to display
information about a login account. The syntax is:

sp_displaylogin [login_name]

If you are not a System Security Officer or System Administrator, you
can get information only about your own account and you do not
need to use the login_name parameter. sp_displaylogin displays your
server user ID, login name, full name, roles, date of last password
change, and whether your account is locked.

If you are a System Security Officer or System Administrator, you
can use the login_name parameter to access information about any
login.

The show_role Function

The show_role function displays any roles that are currently enabled
for your login session. The syntax is:

select show_role()

It returns NULL if you have no roles enabled.

Checking for Roles in Stored Procedures: the proc_role Function

Use proc_role within a stored procedure to guarantee that only users
with a specific role can execute it. While grant execute can also restrict
execute permission on a stored procedure, users without the
required role might inadvertently be granted permission to execute
it. Only proc_role provides a fail-safe way to prevent inappropriate
access to a particular stored procedure.

2-8 Roles in SQL Server

Managing Roles in SQL Server SYBASE SQL Server Release 10.0

proc_role takes a string for the required role (sso_role, sa_role, or
oper_role) and returns 1 if the invoker possesses it. Otherwise, it
returns 0.

For example, here is a procedure that uses proc_role to see if the user
has the sa_role role:

create proc test_proc
as
if (proc_role("sa_role") = 0)
begin

print "You don’t have the right role"
return -1

end
else

print "You have SA role"
return 0

System Administration Guide 3-1

3. Managing Physical Resources

Introduction

SQL Server is designed to make reasonable default decisions about
many aspects of storage management—where databases, tables, and
indexes are placed, and how much space is allocated for each of them.
However, the System Administrator has control over the physical
placement of databases, tables, indexes, and the allocation of space to
them.

In addition, after an application has stabilized and its data-handling
requirements have been determined, SQL Server provides ways to
refine storage management. These refinements are not an essential
aspect of data definition, but a means of improving performance.

This chapter covers these aspects of storage management:

• Issues in storage management decisions

• The system tables that manage storage

• Initializing database devices

• Designating default database devices

• Disk mirroring for nonstop recovery in case of physical disk
crashes

• Creating user databases with the create database command

• Putting the transaction log on a separate device with the log on
clause to create database

• Enlarging user databases with the alter database command

• Removing databases with the drop database command

• Creating and using segments

• Finding information on storage

Responsibility for storage allocation and management is often
centralized. In most installations, the System Administrator retains
complete control over these matters.

3

3-2 Managing Physical Resources

Commands for Managing Resources SYBASE SQL Server Release 10.0

Commands for Managing Resources

Table 3-1 illustrates the major commands a System Administrator
uses to manage the allocation of physical resources.

Command Task

disk init
name = "dev_name"
physname = "phys_name"
etc.

Makes a physical device available to a
particular SQL Server. Assigns a database
device name (dev_name) used to identify the
device in other SQL Server commands.

disk mirror
name = "dev_name"
mirror = "phys_name"
etc.

Mirrors a database device on a specific
physical device.

sp_diskdefault "dev_name"
etc.

Adds dev_name to the general pool of
default database space.

create database ... on dev_name
or
alter database ... on dev_name

Makes database devices available to a
particular SQL Server database. The log on
clause to create database places the
database’s logs on a particular database
device.

create database ...
or
alter database ...

When used without the on dev_name clause,
these commands allocate space on the
default database devices.

sp_addsegment seg_name,
 dbname, devname

and
sp_extendsegment seg_name,

dbname, devname

Creates a segment, named collection of
space, from the devices available to a
particular database.

create table ... on seg_name
or
create index ... on seg_name

Creates database objects, placing them on a
specific segment of the database’s assigned
disk space.

create table ...
or
create index ...

When used without on seg_name, tables and
indexes occupy the general pool of space
allocated to the database (the default
devices).

Table 3-1: Commands for Allocating Physical Resources

System Administration Guide 3-3

SYBASE SQL Server Release 10.0 Considerations in Storage Management Decisions

Considerations in Storage Management Decisions

The System Administrator of a SQL Server installation must make
many decisions regarding the physical allocation of space to SQL
Server databases. The major considerations in these choices are:

• Recovery: Disk mirroring and/or maintaining logs on a separate
physical device provide two mechanisms for full recovery in the
event of physical disk crashes.

• Performance: For certain tables or databases where speed of disk
reads and writes is crucial, properly assigning database objects to
physical devices yields performance improvements. Disk
mirroring will slow the speed of disk writes.

Recovery

Recovery is the key motivation for using several disk devices. Non-
stop recovery can be accomplished by mirroring database devices.
Full recovery can also be ensured by storing a database’s log on a
separate physical device.

Keeping Logs on a Separate Device

Unless a database device is mirrored, full recovery in case of media
failure requires that a database’s transaction log be stored on a
different device from the actual data (including indexes) of a
database. You can use the log on clause of create database to guarantee
that log records will be stored on a separate device. In the event of a
hard disk crash, an up-to-date database can be recreated by loading
a dump of the database, and then applying the log records which
were safely stored on another device.

Mirroring

Non-stop recovery in the event of a hard disk crash is guaranteed
through the mechanism of mirroring SQL Server devices to a
separate physical disk. Mirroring the database devices containing
the actual data and indexes (not just the device containing the
transaction log) is required for recovery without downtime.

Performance

System performance can be improved by placing logs and database
objects on separate devices:

3-4 Managing Physical Resources

Status and Defaults at Installation Time SYBASE SQL Server Release 10.0

• Placing a table on one hard disk and non-clustered indexes on
another ensures that physical reads and writes are faster, since
the work is split between two disk drives.

• Splitting large tables across two disks can improve performance,
particularly for multi-user applications.

Status and Defaults at Installation Time

Installing SQL Server is covered in the SQL Server Installation Guide.
The installation program and scripts initialize the master device and
set up the master, model, sybsystemprocs, sybsecurity, and temporary
databases for you.

When you first install SQL Server:

• The master, model, and tempdb databases are installed on the
master device d_master.

• The sybsystemprocs database is installed on a device that you
choose at installation time.

• Three segments are created in each database: system, default, and
logsegment.

• The default storage device for all user-created databases is
d_master.

• If you have chosen to install the audit database, sybsecurity, it is
located on its own device.

The System Tables that Manage Storage

Two system tables in the master database and two more in each user
database track the placement of databases, tables (including the
transaction log table, syslogs), and indexes. The relationship between
the tables is illustrated in Figure 3-1.

The sysdevices Table

The sysdevices table in the master database contains one row for each
database device and may contain a row for each dump device (tape,
disk, or operating system file) available to SQL Server.

The disk init command adds entries for database devices to
master..sysdevices. Dump devices, added with the system procedure

System Administration Guide 3-5

SYBASE SQL Server Release 10.0 The System Tables that Manage Storage

sp_addumpdevice, are discussed in Chapter 7, ‘‘Developing a Backup
and Recovery Plan’’.

sysdevices stores two names for each device:

• A “logical name” or “device name” to be used in all subsequent
storage-management commands, stored in the name column of
sysdevices. This is usually a user-friendly name, perhaps
indicating the planned use for the device, for example “logdev”
or “userdbdev”.

• The “physical name”, the actual operating system name of the
device. You only use this name in the disk init command; after that,
all SQL Server data storage commands use the logical name.

dbid
segmap
lstart
size
vstart
pad
unreservedpgs

SYSUSAGES
vstart between low, high

Master
Database

User
Database

name
id
indid
doampg
ioampg
oampgtrips
status2
ipgtrips
first
root
distribution
usagecnt

segment
status
rowpage
minlen
maxlen
maxirow
keycnt
keys1
keys2
soid
csid

SYSINDEXES

N 1

N segment

1 N

segment segment

Figure 3-1: The System Tables that Manage Storage

One row for
each table,
index or
table with
text

One row for
each device

One row
for each
fragment

One row
for each
segment

N segmap

low
high
status
cntrltype
name
phyname
mirrorname

SYSDEVICES

segment
name
status

SYSSEGMENTS

3-6 Managing Physical Resources

The System Tables that Manage Storage SYBASE SQL Server Release 10.0

You place a database or transaction log on one or more devices by
specifying the logical name of the device in create database or alter
database statements. The log on clause to create database places a
database’s transaction log on a separate device (a must to ensure full
recoverability). The log device must also have an entry in sysdevices
before you can use log on.

A database can reside on one or more devices, and a device can store
one or more databases.

The sysusages Table

The sysusages table in the master database keeps track of all of the
space that you assign to all SQL Server databases.

create database and alter database allocate new space to the database by
adding a row to sysusages for each database device or device
fragment. When you allocate only a portion of the space on a device
with create or alter database, that portion is called a fragment.

The system procedures sp_addsegment, sp_dropsegment, and
sp_extendsegment change the segmap column in sysusages for the device
that is mapped or unmapped to a segment.

The syssegments Table

The syssegments table, one in each database, lists the segments in a
database. A segment is a collection of the database devices and/or
fragments available to a particular database. Tables and indexes can
be assigned to a particular segment, and thereby to a particular
physical device, or can span a set of physical devices.

create database makes default entries in syssegments. The system
procedures sp_addsegment and sp_dropsegment add and remove entries
from syssegments.

The sysindexes Table

The sysindexes table lists each table and index, and the segment
where each table, clustered index, nonclustered index, and each
chain of text pages is stored.

New rows are created in sysindexes by create table and create index
commands.

System Administration Guide 3-7

SYBASE SQL Server Release 10.0 Initializing Database Devices

Initializing Database Devices

A database device stores the objects that make up databases. The
term device does not necessarily refer to a distinct physical device: it
can refer to any piece of disk (such as a partition) or a file in the file
system used to store databases and their objects.

Each database device or file must be prepared and made known to
SQL Server before it can be used for database storage. This process is
called initialization.

Once a database device is initialized, it can be:

• Allocated to the pool of space available to a user database

• Allocated to a user database, and assigned to store a specific
database object or objects

• Used to store a database’s transaction logs

• Designated as a default device for create and alter database
commands

A System Administrator initializes new database devices with the
disk init command. disk init does the following:

• Maps the specified physical disk device or operating system file
to a “database device” name

• Lists the new device in master..sysdevices

• Prepares the device for database storage

➤ Note
Before you run disk init, see the System Administration Guide Supplement for

your platform for information about choosing a database device and preparing

it for use with SQL Server. You may wish to re-partition the disks on your

computer to provide maximum performance for your SYBASE databases.

disk init divides the database devices into allocation units of 256 2K
pages, a total of a half megabyte (on Stratus, 256 4K pages, one
megabyte). In each 256-page allocation unit, the disk init command
initializes the first page as the allocation page, which will contain
information about the database (if any) that resides on the allocation
unit.

3-8 Managing Physical Resources

Initializing Database Devices SYBASE SQL Server Release 10.0

◆ WARNING!
After you run the disk init command, be sure to use dump database to dump
the master database. This makes recovery easier and safer in case
master is damaged. If you add a device and fail to back up master , you
may be able to recover the changes with disk reinit. See Chapter 9,
‘‘Backing Up and Restoring the System Databases’’.

disk init Syntax

Here’s the syntax of the disk init command:

disk init
name = " device_name " ,
physname = " physicalname " ,
vdevno = virtual_device_number ,
size = number_of_blocks
[, vstart = virtual_address ,

cntrltype = controller_number]
[, contiguous] (OpenVMS only)

disk init Examples

On UNIX:

disk init
 name = "user_disk",
 physname = "/dev/rxy1a",
 vdevno = 2, size = 5120

On OpenVMS:

disk init
 name = “user_disk”,
 physname = “disk$rose_1:[dbs]user.dbs”,
 vdevno = 2, size = 5120,
 contiguous

Specifying a Logical Device Name with disk init

The device_name must be a valid identifier. This name is used in the
create database and alter database commands, and in the system
procedures that manage segments. The logical device name is known
only to SQL Server, not to the computer system on which the server
runs.

System Administration Guide 3-9

SYBASE SQL Server Release 10.0 Initializing Database Devices

Specifying a Physical Device Name with disk init

The physicalname of the database device gives the name of a raw disk
partition (UNIX) or foreign device (OpenVMS), or the name of an
operating system file. On PC platforms you can use only operating
system filenames for the physicalname.

Choosing a Device Number for disk init

vdevno is an identifying number for the database device. It must be
unique among devices used by SQL Server. Device number 0
represents the device named d_master, that stores the system
catalogs. Legal numbers are between 1 and 255, but the highest
number must be one less than the number of database devices for
which your system is configured. For example, for a system with the
default configuration of 10 devices, the legal device numbers are 1
through 9. To see the configuration value for your system, execute
sp_configure devices, without giving a second parameter, and check the
run_value, the last column in the output:

sp_configure devices

name minimum maximum config_value run_value
--------------- -------- -------- ------------ ---------
devices 4 256 0 10

To see the numbers already in use for vdevno, look in the
device_number column of the report from sp_helpdevice, or, the
following query lists all the device numbers currently in use:

select distinct low/16777216
from sysdevices
order by low

SQL Server is originally configured for 10 devices. You may be
limited to a smaller number of devices by operating system
constraints. See the discussion of sp_configure, which is used to change
configuration options, in Chapter 12, ‘‘Fine-Tuning Performance and
Operations’’.

If you issue a disk init that does not succeed for any reason, and you
need to re-issue the disk init command, you must either use a different
value for vdevno, or you must restart SQL Server.

Specifying the Device Size with disk init

The size of the database device must be given in 2K blocks (4K on
Stratus). There are 512 2K blocks (256 4K blocks) in a megabyte.

3-10 Managing Physical Resources

Initializing Database Devices SYBASE SQL Server Release 10.0

If you are planning to use the new device for the creation of a new
database, the minimum size is the larger of:

• The size of model. When you install SQL Server, model uses 2
megabytes, 1024 2K blocks. Use sp_helpdb model to see the current
size of model.

• The configuration value database size. Use sp_configure and look at
the run_value for database size.

If you are initializing a database device for a transaction log or for
storing small tables or indexes on a segment, the size can be as small
as 512 2K blocks (1 megabyte).

If you are initializing a raw device (UNIX) or foreign device
(OpenVMS), determine the size of the device from your operating
system as described in the System Administration Guide Supplement
for your platform. Use the maximum size available; once you have
initialized the disk for use by SQL Server, you cannot use any space
on the disk for other purposes.

disk init uses size to compute the value for the high virtual page
number in sysdevices.high.

Optional Parameters for disk init

vstart is the starting virtual address, or the offset in 2K blocks, for SQL
Server to begin using the database device. The default value (and
usually the preferred value) of vstart is zero.

The optional cntrltype keyword specifies the disk controller. Its default
value is zero. Reset it only if instructed to do so.

contiguous, an option for OpenVMS systems only, forces the database
file to be created contiguously.

➤ Note
To perform disk initialization, the user who started SQL Server must have the

appropriate operating system permissions on the device that is being

initialized. (This does not apply to SQL Servers running on PCs.)

Getting Information about Devices

The system procedure sp_helpdevice provides information about the
devices in the sysdevices table.

System Administration Guide 3-11

SYBASE SQL Server Release 10.0 Initializing Database Devices

When used without a device name, sp_helpdevice lists all the devices
available on SQL Server. When used with a device name, it lists
information about that device. Here sp_helpdevice is used to report
information on the master device:

sp_helpdevice master

device_name physical_name description
----------- --
master d_master special, default disk, physical disk, 20 MB

status cntrltype device_number low high
------ ---------- -------------- ------ -------
3 0 0 0 9999

Each row in master..sysdevices describes:

• A dump device (tape, disk, or file) to be used for backing up
databases, or

• A database device to be used for database storage.

The initial contents of sysdevices are operating-system dependent.
Entries in sysdevices usually include:

• One for d_master.

• One for the sybsystemprocs database, which you can use to store
additional databases such as pubs2 and sybsyntax, or for user
databases and logs.

• Two for tape dump devices.

If you installed auditing, there will also be a separate device for
sybsecurity.

The low and high fields represent the page numbers that have been
assigned to the device. For dump devices, they represent the media
capacity of the device.

The status field in sysdevices is a bitmap which indicates the type of
device, whether a disk device will be used as a default storage device
when users issue a create or alter database command without specifying
a database device, and disk mirroring information. Here are the bits
and their meanings:

Bit Meaning
1 default disk, may be used by any create or alter database

command that doesn’t specify a location
2 physical disk
4 logical disk (not used)

Table 3-2: Status Bits in sysdevices

3-12 Managing Physical Resources

Designating Default Devices SYBASE SQL Server Release 10.0

Dropping Devices

To drop database and dump devices, use the system procedure
sp_dropdevice. The syntax is:

sp_dropdevice device_name

You cannot drop a device that is in use by a database. You must drop
the database first.

sp_dropdevice removes the device name from sysdevices. sp_dropdevice
does not remove an operating system file that is being dropped as a
database device: it only makes the file inaccessible to SQL Server.
You must use operating system commands to delete a file after using
sp_dropdevice.

You must restart SQL Server after you drop a device because the
server has a process that is accessing the dropped device; there is no
other way to kill the process. Restarting frees up the virtual device
number. Stop the server with shutdown; restart it with startserver. See
the SQL Server Utility Programs manual for information on the
startserver utility.

If a disk init fails for any reason, you may also need to restart SQL
Server to free up the virtual device number.

Designating Default Devices

To create a pool of default database devices to be used by all SQL
Server users for creating databases, use the sp_diskdefault command
after the devices are initialized with disk init. sp_diskdefault marks these
devices in sysdevices as default devices. Whenever users create
databases (or alter databases) without specifying a database device,
new disk space is allocated from the pool of default disk space.

8 skip header
16 dump device
32 serial writes
64 device mirrored

128 reads mirrored
256 secondary mirror side only
512 mirror enabled

2048 used internally; set after disk unmirror, side = retain

Bit Meaning

Table 3-2: Status Bits in sysdevices (continued)

System Administration Guide 3-13

SYBASE SQL Server Release 10.0 Designating Default Devices

The syntax for sp_diskdefault is:

sp_diskdefault device_name , {defaulton | defaultoff}

You are most likely to use the defaultoff option in order to remove the
master device from the pool of default space:

sp_diskdefault master, defaultoff

The following command makes sprocdev, the device that holds the
sybsystemprocs database, a default device:

sp_diskdefault sprocdev, defaulton

A SQL Server can have multiple default devices. They are used in the
order in which they appear in the sysdevices table (i.e., alphabetical
order). When the first default device is filled, the second default
device is used, and so on.

Choosing Default and Non-Default Devices

sp_diskdefault lets you plan space usage carefully for performance and
recovery, while allowing users to create or alter databases
occasionally.

Make sure these devices are not default devices:

• The master device (use sp_diskdefault to set defaultoff after adding
user devices)

• The device for sybsecurity

• Any device intended solely for logs

• Devices where high-performance databases reside, perhaps
using segments

You can use the device that holds sybsystemprocs for other user
databases.

➤ Note
If you’re using disk mirroring or segments, you should exercise caution in

deciding which devices you add to the default list with sp_diskdefault.

In most cases, devices that are to be mirrored or databases that will contain

objects placed on segments should allocate devices specifically, rather than

being made part of default storage.

3-14 Managing Physical Resources

Disk Mirroring SYBASE SQL Server Release 10.0

Disk Mirroring

Disk mirroring can provide non-stop recovery in the event of media
failure. The disk mirror command causes a SQL Server database device
to be “duplicated”: all writes to the device are copied to a separate
physical device. If one of the devices fails, the other contains an up-
to-date copy of all transactions.

➤ Note
You cannot mirror a dump device.

When a read or write to a mirrored device fails, SQL Server causes
the bad device to become unmirrored, and displays error messages.
SQL Server continues to run, unmirrored. The System Administrator
must issue a disk remirror command to restart mirroring.

Deciding What to Mirror

When deciding to mirror a device, you must weigh such factors as
the costs of system downtime, possible reduction in performance,
and the cost of storage media. Reviewing these issues will help you
decide what to mirror: just the transaction logs, all devices on a
server, or selected devices.

Figure 3-2: Disk Mirroring Using Minimal Physical Disk Space illustrates
the “minimum guaranteed configuration” for database recovery in
case of hardware failure. The master device and a mirror of the user
database transaction log are stored in separate partitions on one
physical disk. The other disk stores the user database and its
transaction log in two separate partitions.

If the disk with the user database fails, you can restore the user
database on a new disk from your backups and the mirrored
transaction log.

If the disk with the master device fails, you can restore the master
device from a database dump of the master database and remirror the
user database’s transaction log.

This configuration minimizes the amount of disk storage required. It
provides for full recovery, even if the disk storing the user database
and transaction log is damaged, because the mirror of the transaction
log ensures full recovery. However, this configuration does not
provide non-stop recovery because the master and user databases are
not being mirrored, and must be recovered from backups.

System Administration Guide 3-15

SYBASE SQL Server Release 10.0 Disk Mirroring

Figure 3-3: Disk Mirroring for Rapid Recovery represents another mirror
configuration. In this case, the master device, user databases, and the
transaction log are all stored on different partitions of the same
physical device, and are all mirrored to a second physical device.

The configuration in Figure 3-3 provides non-stop recovery from
hardware failure. Working copies of the master and user databases
and log on the primary disk are all being mirrored, and failure of
either disk will not interrupt SQL Server users.

With this configuration, all data is written twice, once to the primary
disk, and once to the mirror. Applications which involve many
writes may be slower with disk mirroring than without mirroring.

Figure 3-4: Disk Mirroring: Keeping Transaction Logs on a Separate Disk
illustrates another configuration with a high level of redundancy. In
this configuration, all three database devices are mirrored, but the
configuration uses four disks instead of two. This configuration

User

Transaction
Logs

Master

Mirror of
Transaction
Logs

DeviceDatabase

Figure 3-2: Disk Mirroring Using Minimal Physical Disk Space

Master

User
Databases

Transaction
Logs

Master

User
Databases

Transaction
Logs

Device Device

Figure 3-3: Disk Mirroring for Rapid Recovery

3-16 Managing Physical Resources

Disk Mirroring SYBASE SQL Server Release 10.0

speeds performance during write transactions because the database
transaction log is stored on a different device from the user
databases, and the system can access both with less disk head travel.

In summary, these three examples involved different cost and
performance trade-offs:

1. Speed of Recovery. You can achieve non-stop recovery when the
master and user databases (including logs) are mirrored, and can
recover without the need to reload transaction logs.

2. Storage space. Immediate recovery requires full redundancy (all
databases and logs mirrored), which consumes disk space.

3. Impact on performance. Mirroring the user databases (as in
Figure 3-3 and Figure 3-4) increases the time needed to write
transactions to both disks.

Disk Mirroring Commands

Three commands, disk mirror, disk unmirror and disk remirror, control disk
mirroring. All of the commands can be issued while the devices are

Transaction
Logs

Master

Transaction
Logs

Device
Master
Device

Master &
Transaction Logs

Mirror of
Master and Transaction Logs

User Databases
Mirror of

User Databases

Figure 3-4: Disk Mirroring: Keeping Transaction Logs on a Separate Disk

System Administration Guide 3-17

SYBASE SQL Server Release 10.0 Disk Mirroring

in use, so you can start or stop database device mirroring while
databases are being used.

➤ Note
All of these commands alter the sysdevices table in the master database. After

issuing any of these commands you should dump the master database to

ensure recovery in case master is damaged.

Initializing Mirrors

The disk mirror command starts disk mirroring. Do not initialize the
mirror device with disk init. A database device and its mirror
constitute one logical device. The mirror name is added to the
mirrorname column in the sysdevices table.

➤ Note
To retain use of asynchronous I/O, mirror raw devices to raw devices, and

operating system files to operating system files. Mirroring a raw device with a

regular file produces an error message. Mirroring a regular file with a raw

device will work, but will not use asynchronous I/O.

Here is the disk mirror syntax:

disk mirror
name = "device_name " ,
mirror = "physicalname "
[, writes = { serial | noserial }]
[, contiguous] (OpenVMS only)

The device_name is the name of the device that you want to mirror, as
it is recorded in sysdevices.name (by disk init). The physicalname is a full
path name for the mirror disk, which is not yet initialized. It cannot
be an already-existing operating system file.

On systems that support asynchronous I/O, the writes option allows
you to specify whether writes to the first device must finish before
writes to the second device begin (serial), or whether both I/O
requests are to be queued immediately, one to each side of the mirror
(noserial).

In either case, if a write cannot be completed, the I/O error causes the
bad device to become unmirrored.

3-18 Managing Physical Resources

Disk Mirroring SYBASE SQL Server Release 10.0

serial writes are the default. The writes to the devices take place
consecutively; the first one finishes before the second one starts. serial
writes provide protection in the case of power failures: one write
may be garbled, but both of them will not be. serial writes are
generally slower than noserial writes.

OpenVMS users should see the SQL Server Utility Programs manual
for an explanation of the contiguous option.

In the following example, tranlog is the logical device name for a raw
device. The tranlog device was initialized with disk init and is being
used as a transaction log device (as in create database... log on tranlog).
The following command mirrors the transaction log device:

disk mirror
 name = tranlog,
 mirror = "/dev/rxy1e"

Effects on System Tables

The database device that you want to mirror will already have been
initialized with disk init. The physicalname that you give to disk mirror is
added to the existing row in sysdevices in the mirrorname column and
the status bits are updated to reflect the configuration you’ve chosen.

Unmirroring a Device

Disk mirroring is automatically de-activated when one of the two
physical devices fails.

Use the disk unmirror command to stop the mirroring process when
hardware maintenance is needed or when a hardware device needs
to be changed.

disk unmirror
 name = " device_name "
 [, side = { "primary" | secondary }]
 [, mode = { retain | remove }]

The side option to the disk unmirror command allows you to specify
which side of the mirror to disable. primary (in quotes) is the device
listed in the name column of sysdevices; secondary (no quotes required)
is the device listed in the mirrorname column of sysdevices. secondary is
the default.

The mode option indicates whether the unmirroring process should
be temporary (retain) or permanent (remove). retain is the default.

System Administration Guide 3-19

SYBASE SQL Server Release 10.0 Disk Mirroring

Effects on System Tables

The mode option changes the status column in sysdevices to indicate
that mirroring has been disabled. Its effects on the phyname and
mirrorname columns in sysdevices depend on the side argument also,
as shown in Table 3-3.

This example suspends the operation of the primary device:

disk unmirror
 name = tranlog,
 side = primary

Restarting Mirrors

Use disk remirror to restart a mirror process that has been suspended
due to a device failure or with disk unmirror. The syntax is:

disk remirror
 name = " device_name "

This command copies the database device to its mirror.

waitfor mirrorexit

Since disk failure can impair system security, the waitfor mirrorexit
command can be included in an application to perform specific tasks
when a disk becomes unmirrored.

begin
 waitfor mirrorexit

commands to be executed
end

The commands depend on your applications. You may wish to add
certain warnings in applications which perform updates, or use

side

primary secondary

mode
remove

Name in mirrorname
moved to phyname and
mirrorname set to null;
status changed

Name in
mirrorname
removed; status
changed

retain Names unchanged; status changed to indicate
which device is being de-activated

Table 3-3: Effects of mode and side Options to disk mirror Command

3-20 Managing Physical Resources

Creating User Databases SYBASE SQL Server Release 10.0

sp_dboption to make certain databases read only if the disk becomes
unmirrored.

➤ Note
SQL Server only knows that a device has become unmirrored when it attempts

I/O to the mirror device. On mirrored databases, this occurs at a checkpoint, or

whenever the SQL Server buffer must be written to disk. On mirrored logs, I/O

occurs whenever a process writes to the log, including any committed

transaction that performs data modification, a checkpoint, or a database dump.

waitfor mirrorexit (and the error messages that are printed to the console
and errorlog on mirror failure) are only activated by these events.

Mirroring the Master Device

If you choose to mirror the device that contains the master database,
you need to edit the runserver file for your SQL Server, so that the
mirror device starts when the server boots.

On UNIX, add the -r flag and the name of the mirror device:

dataserver -d /dev/rsd1f -r /dev/rs0e -e/sybase/install/errorlog

On OpenVMS, add the mirror name:

dataserver /device=(DUA0:[dbdevices]master.dat, -
DUB1:[dbmirrors]mirror.dat) -
/errorfile=sybase_system:[sybase.install]errorlog

For PC platform examples, refer to the System Administration Guide
Supplement.

Creating User Databases

User databases are created with the create database command. All
databases must be created while using the master database. To create
a database, a user must be a valid user of master (added with
sp_adduser) and must have create database permission.

The create database command clears every page of the database device.
It may take up to several seconds or several minutes to complete,
depending on the size of the database and the speed of your system.
If you are creating a database in order to load a database dump, you
can use an option to create database that skips page clearing (the page
clearing step will be performed after the load completes).

System Administration Guide 3-21

SYBASE SQL Server Release 10.0 Creating User Databases

create database Syntax

The create database syntax is:

create database database_name
[on {default | database_device } [= size]

[, database_device [= size]...]
[log on database_device [= size]

[, database_device [= size]]...]
[with override]
[for load]

A database name must follow the rules for identifiers. You can create
only one database at a time.

In its simplest form, create database creates a database on the default
devices available on your server:

create database newpubs

The optional on clause allows you to specify the names of one or
more database devices, and the space allocation for each database
device in megabytes. All of the database devices named in create
database must be listed in sysdevices, that is, they must have been
initialized with disk init. If you use the keyword default (or if you omit
the on clause altogether), the database is stored on one or more of the
default database devices.

To specify a size (in this example, 4 megabytes) for a database to be
stored in a default location, use on default = size like this:

create database newpubs
on default = 4

To place the database on specific database devices, give the name(s)
of the database device(s) on which you want it stored. As the syntax
indicates, you can request that a database be stored on more than one
database device, with different amounts of space on each. The
following statement creates the newdb database and allocates 3
megabytes on mydata and 2 megabytes on newdata2. It places the
transaction log on a third database device, tranlog:

create database newdb
on mydata = 3, newdata = 2
log on tranlog = 2

3-22 Managing Physical Resources

Creating User Databases SYBASE SQL Server Release 10.0

How User Databases are Created

When a create database statement is issued:

• Verifies that the database name specified in the statement is
unique

• Makes sure that the database device names specified in the
statement are available

• Finds an unused identification number for the new database

• Assigns space to the database on the specified database devices,
and updates master..sysusages to reflect these assignments

• Inserts a row into sysdatabases

• Makes a copy of the model database in the new database space,
thereby creating the new database’s system tables

• Clears the remaining pages in the database (create database...for load
skips this step)

The new database initially contains a set of system tables, with
entries that describe the system tables themselves. The new database
inherits all of the changes you have made to the model database.
These can include:

• The addition of user names

• The addition of objects

• The database option settings. Originally, the options are set off in
model. If you want all of your new user databases to inherit
particular options, you can change the options in model with the
system procedure sp_dboption.

Permissions for Creating Databases

Only System Administrators can grant permission to use the create
database command. In many installations, System Administrators
maintain a monopoly on create database permission in order to
centralize control of database placement and database device
allocation.

In these situations, System Administrators create new databases on
behalf of other users, and then transfer ownership to the appropriate
user.

To create a database that is to be owned by another user, the System
Administrator:

System Administration Guide 3-23

SYBASE SQL Server Release 10.0 Creating User Databases

1. Issues the create database command,

2. Switches to the new database with the use command, and then

3. Executes the system procedure sp_changedbowner.

The System Administrator can also directly grant permission to create
databases.

The fact that System Administrators seem to operate outside the
protection system serves as a safety precaution. For example, if a
Database Owner forgets his or her password or accidentally deletes
all entries in sysusers, a System Administrator can repair the damage
(from the backups or dumps that are, of course, regularly made).

Assigning Databases to Database Devices

Databases are allocated storage space when the create database or alter
database command is issued. The create database command can specify
one or more database devices, and the amount of space on each that
is to be allocated to the new database. In addition, the log on clause to
create database should be used to place the database’s transaction log
on a separate device.

If no database device is specified (or if the keyword default is used),
SQL Server puts the database on one or more of the default database
devices specified in master..sysdevices.

Database Size

If the size parameter in the on clause is omitted, the database is
created with the default amount of space. This amount will be the
greater of:

• The database size parameter in master..sysconfigures, or

• The size of the model database.

The size of model and the value of database size are initially set to 2
megabytes. The size of model can be changed by allocating more
space with alter database. The database size configuration variable can be
reset with sp_configure. The default size for new databases can be
changed to any size greater than 2 megabytes (up to 10,000
megabytes), by updating master..sysconfigures with the stored
procedure sp_configure and issuing the reconfigure command. See
Chapter 12, ‘‘Fine-Tuning Performance and Operations’’, for
complete instructions.

3-24 Managing Physical Resources

Creating User Databases SYBASE SQL Server Release 10.0

If the amount of space you request on a specific database device is
unavailable, SQL Server creates the database with as much space as
possible on a per-device basis. It then displays a message informing
you how much space was actually allocated on each database device.
(This is not considered an error.) If there is less than the minimum
space necessary for a database on the specified database device (or
on the default, if you don’t give any names), the create database
command fails.

The allocation decisions that you make when you issue create database
or alter database are important, because it is difficult to reclaim storage
space once it’s assigned. You can always add additional space;
however you cannot deallocate space that has been assigned to a
database unless you drop the database first.

Estimating the Size of Tables and Indexes

You can estimate the size of the tables and indexes for your database
using the sp_estspace system procedure. Before you create your user
database, follow these steps for each table:

1. Create the table, with all of the columns and datatypes you will
use. Both the length specification and the nulltype of the
columns is important in determining the amount of storage
space a table will occupy.

2. Create all of the indexes on the table.

3. Execute sp_estspace, giving the table name and the number of
rows that you estimate the table will hold.

You can perform this work in a test or development database, or in
tempdb.

sp_estspace prints the estimated size of the table and each of its
indexes, and the sum of these sizes.

Add the results from sp_estspace to get an estimate of the size of the
user tables and indexes. Each database also requires additional space
for:

• syslogs. If you store your database’s log on a separate segment
using the log on clause, you don’t have to include that in your size
estimate for the data portion of your database.

• Views, procedures, defaults, rules, and triggers you create.
System tables store a copy of the text of these objects, and a copy
of the compiled procedure plan.

System Administration Guide 3-25

SYBASE SQL Server Release 10.0 Creating User Databases

• Other system tables. Execute sp_helpsegment system in the model
database or a newly created database to see how much free space
is available on the segment that stores user and system tables.
Adding users, granting permissions, and performing other
actions in the database that affect the system tables increase the
amount of space these tables use.

See sp_estspace in Volume 2 of the SQL Server Reference Manual for
more information on using this procedure.

Omitting the on Clause

If you omit the on clause completely, the size of the database is the
default size, as described. The space is allocated from the default
database devices indicated in master..sysdevices, in alphabetical order
by database device name.

Use the following query to see the logical names of default database
devices:

select name
from sysdevices
where status & 1 = 1
order by name

sp_helpdevice also displays “default disk” as part of the description of
database devices.

Placing the Transaction Log on a Separate Device: log on

The log on clause to create database places the transaction log (the
syslogs table) on a separate database device. If the size parameter in
the log on clause is omitted, the log device is allocated 2 megabytes of
storage.

There are several reasons to place the logs on a separate database
device:

• It allows you to use the dump transaction command (rather than
dump database), thus saving time and tapes.

• It allows you to establish a fixed size for the log, keeping it from
competing with other database activity for space.

• It creates default free-space threshold monitoring on the log
segment, and allows you to create additional free-space
monitoring on the log and data portions of the database.

3-26 Managing Physical Resources

Creating User Databases SYBASE SQL Server Release 10.0

• It improves performance.

• It ensures full recovery in the event of hard disk crashes. A special
argument to dump transaction lets you dump your transaction log,
even if your data device is on a damaged disk.

Unless you are creating very small, non-critical databases, you
should always use the log on clause to create database.

Determining the Size of the Transaction Log

The size of the device required for the transaction log varies
according to the amount of update activity and the frequency of
transaction log dumps, whether you perform the dumps manually
or use threshold procedures to dump your transaction logs
automatically. As a rule of thumb, allocate to the log 10% to 25% of
the space you allocate to the database itself.

Inserts, deletes and updates increase the size of the logs, and dump
transaction decreases the size of the log by writing committed
transactions to disk and removing them from the log. Since update
statements require logging of both the “before” and “after” images of
a row, applications which require mass updates of large numbers of
rows should plan for transaction log space at least twice as large as
the number of rows to be updated at once—or twice as large as your
largest table. (Of course, you can also “batch” the updates in smaller
groups with transaction dumps between the batches.)

In databases with a lot of insert and update activity, logs can grow
quickly. Periodic checking can help you determine the correct size for
your log, can help you choose thresholds for the log, and can help
you schedule transaction log dumps. To check on the space used by
your transaction log, you must be using the database. Then, issue the
command:

dbcc checktable(syslogs)

dbcc reports the number of data pages in use by the log. If your log is
on a separate device, dbcc checktable also tells you how much space is
used and free. Here is sample output for a 2 megabyte log:

Checking syslogs
The total number of data pages in this table is 199.
*** NOTICE: Space used on the log segment is 0.39 Mbytes, 19.43%.
*** NOTICE: Space free on the log segment is 1.61 Mbytes, 80.57%.
Table has 1661 data rows.

Another command you can use to check on the growth of the log is:

select count(*) from syslogs

System Administration Guide 3-27

SYBASE SQL Server Release 10.0 Creating User Databases

You can repeat either command periodically to see how fast the log
grows.

Omitting the log on Clause

If you omit the log on clause, the database’s transaction log is placed
on the same database device as the data tables. Subsequent use of the
system procedure sp_logdevice (as described on page 3-28) affects only
future writes to the log, and does not immediately move the first few
log pages that were written when the database was created. This
leaves exposure problems in certain recovery situations, and is not
recommended.

➤ Note
Each time you issue the create database command, you should dump the master
database. This makes recovery easier and safer in case master is later

damaged. See Chapter 9, ‘‘Backing Up and Restoring the System Databases’’.

for load Option for Database Recovery

Use the for load option if you are going to use the database for loading
from a database dump, either for recovery from media failure or for
moving a database from one machine to another. Using for load runs a
streamlined version of create database to create a target database that
can only be used for loading a dump.

If you create a database using the for load option, you can run only the
following commands in the new database before loading a database
dump:

• alter database... for load

• drop database

• load database

When you load a database dump, the new database device
allocations for the database need to match the usage allocations of
the dumped database. See Chapter 8, ‘‘Backing Up and Restoring
User Databases’’, for a discussion of duplicating space allocation.

After you load the database dump into the new database, there are
no restrictions on the commands you can use.

3-28 Managing Physical Resources

Moving the Transaction Log to Another Device SYBASE SQL Server Release 10.0

with override Option to create database

This option allows SQL Servers on machines with limited space to
still maintain their logs on separate device fragments from their data.
Use this option only when you’re putting log and data on the same
logical device. This is not recommended practice, but may be the
only option available on machines with limited storage, especially if
you need to get databases back on-line following a hard disk crash.

You’ll still be able to dump your transaction log, but if you
experience a media failure, you won’t be able to access the current
log (since it’s on the same device as the data). You will be able to
recover only to the last transaction log dump, and all transactions
between that point and the failure time will be lost.

Here is an example where log and data are on separate fragments of
the same logical device:

create database littledb
on diskdev1 = 4
log on diskdev1 = 1
with override

Use this option only if you are not concerned with up-to-the-minute
recoverability.

Moving the Transaction Log to Another Device

If you did not use the log on clause to create database, the following
procedure allows you to move your transaction log to another
database device.

The system procedure sp_logdevice moves future allocation for a
database’s transaction log. However, the transaction log remains on
the original device until the allocated page has been filled, and the
transaction log has been dumped.

Here is the syntax for sp_logdevice:

sp_logdevice database_name , device_name

The database device that you name must be initialized with disk init,
and must be allocated to the database with create or alter database.

To move the entire transaction log, complete these steps:

1. Execute sp_logdevice, naming the new database device.

2. Execute enough transactions to fill the page that is currently in
use. Since the page contains 2048 bytes, you may need to update

System Administration Guide 3-29

SYBASE SQL Server Release 10.0 Changing Database Ownership

at least 2048 bytes. You can execute dbcc checktable(syslogs) before
and after you start updating to determine when a new page is
used.

3. Wait for all currently active transactions to finish to ensure that
there are no active transactions on the database device. You may
want to perform this entire activity after putting the database
into single-user mode with sp_dboption.

4. Run dump transaction. See Chapter 7, ‘‘Developing a Backup and
Recovery Plan’’, for more information. dump transaction removes
all the log pages that it writes to disk; as long as there are no
active transactions in the part of the log on the old device, all of
those pages will be removed.

5. Run the system procedure sp_helplog to ensure that the complete
log is on the new log device.

➤ Note
When you move a transaction log, the space no longer used by the transaction

log becomes available for data. You cannot reduce the amount of space

allocated to a device by moving the transaction log.

Transaction logs are discussed in detail in Chapter 7, ‘‘Developing a
Backup and Recovery Plan’’.

Changing Database Ownership

The system procedure sp_changedbowner can be used to change the
ownership of a database. A System Administrator might want to
create the user databases, giving ownership of them to another user
after some of the initial work has been completed. The procedure
must be executed by the System Administrator in the database
whose ownership will be changed. The syntax is:

sp_changedbowner loginame [, true]

This example makes the user “albert,” the owner of the current
database and drops aliases of users who could act as the old “dbo”:

sp_changedbowner albert

The new owner must already have a login name on SQL Server, but
cannot be a user of the database, or have an alias in the database. You
may have to use sp_dropuser or sp_dropalias before you can change a
database’s ownership.

3-30 Managing Physical Resources

Increasing the Size of a Database SYBASE SQL Server Release 10.0

To transfer aliases and their permissions to the new Database Owner,
add the second parameter with the value “true” or “TRUE”.

➤ Note
You cannot change the ownership of the master database. It is always owned

by the “sa” login.

Increasing the Size of a Database

When your database grows to fill all of the space you allocated with
create database, you use the alter database command to add additional
storage. You can add space for database objects or transaction log
space, or both at once. alter database is also used to prepare to load a
database from backup.

Permission to use the alter database command defaults to the Database
Owner, and permission is automatically transferred with database
ownership (see sp_changedbowner in the SQL Server Reference Manual).
alter database permission cannot be changed with grant or revoke.

If you execute alter database with only a database name, it adds one
megabyte on the default database devices. If your database separates
log and data, the space you add will be entirely used for data. You
can find names of database devices that are in your default list with
sp_helpdevice.

To add one megabyte on a default database device for the newpubs
database, type:

alter database newpubs

alter database Syntax

The full syntax allows you to extend a database by other amounts
and to specify where storage space is to be added:

alter database database_name
 [on {default | database_device } [= size]

 [, database_device [= size]]...]
 [log on {default | database_device } [= size]

 [, database_device [= size]]...]
 [with override]
 [for load]

System Administration Guide 3-31

SYBASE SQL Server Release 10.0 Increasing the Size of a Database

The on and log on clauses in the alter database command are just like the
corresponding clauses in the create database command. You can
specify space on a default database device or on some other database
device, and you can name more than one database device. If you are
using alter database to extend the master database, however, you can
only extend it on the master device. The minimum increase you can
specify is one megabyte (512 2K pages).

To add three megabytes to the space allocated for the newpubs
database on the database device named pubsdata1, the command is:

alter database newpubs
on pubsdata1 = 3

If SQL Server can’t allocate the requested size, it allocates as much as
it can on each database device with a minimum allocation of one-half
megabyte (256 2K pages) per device. When alter database completes, it
prints messages telling you how much space it allocated, like this:

Extending database by 1536 pages on disk pubsdata1

You should check these messages to be sure you added enough
space.

Here is how to add two megabytes to the space allocated for newpubs
on pubsdata1, and add three megabytes on a new device, pubsdata2,
plus another megabyte for the log, on tranlog:

alter database newpubs
on pubsdata1 = 2, pubsdata2 = 3
log on tranlog

➤ Note
Each time you issue the alter database command, dump the master database.

The with override Clause

The with override clause allows you to create a device fragment
containing log space on a device which already contains data, or a
data fragment on a device already in use for the log. Use this option
only in cases where you have no other storage options, and where
up-to-the-minute recoverability is not critical.

The for load Clause

The for load option is used only after create database for load to recreate
the space allocation of the database being loaded into the new
database from a dump. See Chapter 8, ‘‘Backing Up and Restoring

3-32 Managing Physical Resources

drop database Command SYBASE SQL Server Release 10.0

User Databases’’, for a discussion of duplicating space allocation
when loading a dump into a new database.

drop database Command

The drop database command removes a database from the server,
deleting the database and all of the objects in it from SQL Server. This
command:

• Frees the storage space allocated for the database

• Deletes references to it from the system tables in the master
database

The syntax of this command is:

drop database database_name [, database_name]...

Only the Database Owner can drop a database. You must be in the
master database to drop any database. You cannot drop a database
that is in use (open for reading or writing by any user).

You can drop more than one database in a single statement. For
example:

drop database newpubs, newdb

If tables in a database are referenced by referential integrity
constraints from other databases, you must remove the constraints
before you can drop the database. Use alter table to drop the
constraints.

You must drop all the databases on a database device before you can
drop the database device. The command to drop a device is
sp_dropdevice.

After you drop a database, dump the master database to ensure
recovery in case master is damaged.

How SQL Server Allocates Space for a Database

For the user, creating a database on a database device and allocating
a certain amount of space to it is just a matter of issuing a command.
For SQL Server, it’s a more involved task.

SQL Server first makes an entry for the new database in sysdatabases.
Then it checks master..sysdevices to make sure that the device names
specified in the create database command actually exist and are
database devices. If you did not specify database devices, or used the

System Administration Guide 3-33

SYBASE SQL Server Release 10.0 How SQL Server Allocates Space for a Database

default option, SQL Server checks master..sysdevices and
master..sysusages for free space on all devices that can be used for
default storage. It performs this check in alphabetical order by device
name.

The storage space from which SQL Server gathers the specified
amount of storage need not be contiguous, and can be extracted from
whatever free space is available. The database storage space can even
be drawn from more than one database device. Of course, a database
is treated as a logical whole even if it is stored on more than one
database device.

Each piece of storage for a database must be at least 1 allocation
unit—half a megabyte, or 256 contiguous 2K pages (on Stratus, 256
4K pages).The first page of each allocation unit is the allocation page.
It does not contain database rows like all the other pages. Rather, it
contains an array that shows how the other 255 pages are used.

The sysusages Table

The database storage information is listed in the table
master..sysusages. Each row in master..sysusages represents a space
allocation assigned to a database. Thus, each database has one row in
sysusages for each time create database or alter database assigns a
fragment of disk space to a database.

When SQL Server is first installed, sysusages contains rows for these
dbids:

• 1, the master database

• 2, the temporary database, tempdb

• 3, the model database

• 4, the sybsystemprocs database

If you installed auditing, the sybsecurity database will be dbid 5.

➤ Note
If your installation is an upgrade from a pre-Release 10.0 SQL Server,

sybsystemprocs and sybsecurity may have different database IDs.

As new databases are created or current databases enlarged, new
rows are added to sysusages to represent new database allocations.

Here is what sysusages might look like on a SQL Server with the five
system databases and two user databases (with dbids 6 and 7). Both

3-34 Managing Physical Resources

How SQL Server Allocates Space for a Database SYBASE SQL Server Release 10.0

of these databases were created with the log on option. The database
with dbid 7 has been given additional storage space with two alter
database commands:

select dbid, segmap, lstart, size, vstart
from sysusages

dbid segmap lstart size vstart
------ ----------- ----------- ----------- -------
 1 7 0 1536 4
 2 7 0 1024 2564
 3 7 0 1024 1540
 4 7 0 5120 16777216
 5 7 0 10240 33554432
 6 3 0 512 1777216
 6 4 512 512 3554432
 7 3 0 2048 67108864
 7 4 2048 1024 50331648
 7 3 3072 512 67110912
 7 3 3584 1024 67111424

(10 rows affected)

The segmap Column

The segmap column is a bitmap linked to the segment column in the
user database’s syssegments table. Since the logsegment in each user
database is segment 2, and these user databases have their logs on
separate devices, segmap contains 4 (22) for those devices named in
the log on statement, and 3 for the data segment that holds the system
segment (20 = 1) + default segment (21 = 2).

Here are some of the possible values for segments containing data or
logs:

Values higher than 7 indicate user-defined segments. The segmap
column is explained more fully in the segments tutorial section, later
in this chapter.

Value Segment

3 data only (system and default segments)

4 log only

7 data and log

Table 3-4: Segment Values

System Administration Guide 3-35

SYBASE SQL Server Release 10.0 Creating and Using Segments

The lstart, vstart and size Columns

The lstart column contains the starting page number within the
database of this allocation unit. Each database starts at logical
address “0.” If additional allocations have been made for a database,
as in the case of dbid 7, the lstart field reflects this.

The size column contains the number of contiguous 2K pages that are
assigned to the same database (on Stratus, 4K pages). The ending
logical address of this portion of the database can be determined by
adding the values in lstart and size.

The vstart column contains the address where the piece assigned to
this database begins. The upper four bits store the virtual device
number (vdevno), and the lower four bits store the virtual block
number. (To obtain the virtual device number, divide sysusages.vstart
or sysdevices.low by 16,777,216, which is 224.) The value in vstart
identifies which database device contains this portion of the
database, because it falls between the values in the low and high
columns of sysdevices for the database device in question.

Creating and Using Segments

Segments are named subsets of the database devices available to a
particular SQL Server database. A segment can best be described as
a label that points to one or more database devices. Segment names
are used in create table and create index commands to place tables or
indexes on specific database devices. The use of segments can
increase SQL Server performance, and can give the System
Administrator or Database Owner increased control over placement,
size and space usage of specific database objects. For example:

• If a table is placed on one device, and its non-clustered indexes on
a device on another disk controller, the time required to read or
write to the disk can be reduced, since disk head travel is usually
reduced.

• If a large, heavily-used table is split across devices on two
separate disk controllers, read/write time may be improved.

• SQL Server stores the data for text and image columns on a
separate chain of data pages. By default, this text chain is placed
on the same segment as the table. Since reading a text column
requires a read operation for the text pointer in the base table and
an additional read operation on the text page in the separate text
chain, placing the text chain on a separate physical device can
improve performance.

3-36 Managing Physical Resources

Creating and Using Segments SYBASE SQL Server Release 10.0

• If you place tables and indexes only on specific segments, those
database objects cannot grow beyond the space available to the
devices represented by those segments, and other objects cannot
contend for space with them. Segments can be extended to
include additional devices as needed.

• You can use thresholds to warn you when space becomes low on
a particular database segment. See Chapter 10, ‘‘Managing Free
Space with Thresholds’’ for more information.

Segments are created within a particular database from the database
devices already allocated to that database. Each SQL Server database
can contain up to 32 segments. The database devices must first be
initialized with disk init, and then be made available to the database
with a create database or alter database statement before you can assign
segment names.

When you first create a database, SQL Server creates three segments
in the database:

Commands and Procedures for Using Segments

SQL Server procedures and commands for using segments are:

Segment Function

system Stores this database’s system tables.

logsegment Stores this database’s transaction log.

default Stores all other database objects—unless you create
additional segments, and store the table or index on the
new segments by using create table... on segment_name or
create index... on segment_name.

Table 3-5: Default Segments

Command Action

sp_addsegment Define a segment in a database

create table and
create index

Create database objects on segments

sp_dropsegment Remove a segment from a database

sp_extendsegment Add additional devices to an existing segment

Table 3-6: Commands and Procedures for Managing Segments

System Administration Guide 3-37

SYBASE SQL Server Release 10.0 Creating and Using Segments

The following sections introduce the system procedures and
commands for using segments, and review how segments affect
system tables. The final section on segments is a tutorial showing
how to use the system procedures and commands. See Chapter 12,
‘‘Fine-Tuning Performance and Operations’’, for another example of
using segments to improve system performance.

Creating Segments

There are two preliminary steps to creating a segment within a
database:

• Initialize the physical device with disk init.

• Make the database device available to the database by using the
on clause to create database or alter database.

Once the database device exists and is available to the database,
define the segment in the database with the stored procedure
sp_addsegment. Here is the syntax:

sp_addsegment segname, dbname, devname

segname can be any valid identifier. It will be used in create table and
create index statements to place those objects on the segment (and
thereby, on the device named in devname).

dbname is the name of the database where the next segment will be
created.

devname is the name of the database device: the name used in disk init
and create and alter database statements.

This statement creates the segment seg_mydisk1 on the database
device mydisk1:

sp_addsegment seg_mydisk1, mydata, mydisk1

sp_placeobject Assign future space allocations for a table or index to a
specific segment

sp_helpsegment Display segment allocation for a database or data on a
particular segment

sp_helpdb Display the segments on each database device

Command Action

Table 3-6: Commands and Procedures for Managing Segments

3-38 Managing Physical Resources

Creating and Using Segments SYBASE SQL Server Release 10.0

Creating Database Objects on Segments

After the segment has been defined in the current database, the create
table or create index commands use the optional clause on segment_name
to place the object on a segment. Here is the syntax:

create table table_name (col_name datatype ...)
[on segment_name]

create [clustered | nonclustered] index index_name
on table_name (col_name)
[on segment_name]

➤ Note
Clustered indexes, where the bottom or leaf level of the index contains the

actual data, are by definition on the same segment as the table. See

‘‘Segments and Clustered Indexes’’ on page 3-48.

Figure 3-5: Placing Objects on Specific Devices Using Segments shows
the sequence of Transact-SQL commands used to place specific
database objects on specific physical disks:

1. Initialize the physical disks.

2. Allocate them to a database.

3. Label the devices with segment names.

4. Create the objects, giving the segment name.

System Administration Guide 3-39

SYBASE SQL Server Release 10.0 Creating and Using Segments

Figure 3-5: Placing Objects on Specific Devices Using Segments

Extending Segments

The stored procedure sp_extendsegment increases the size of a segment,
including additional database devices as part of an existing segment.
The syntax is:

sp_extendsegment segname, dbname, devname

Before you can extend a segment:

• The database device must be listed in sysdevices (through the use
of disk init),

• The database device must be available in the desired database
(through an alter database or create database statement), and

/dev/rxy1a /dev/rxy2a

Physical devices

use master

alter database mydata
on mydisk1 = 4, mydisk2 = 2

use mydata

sp_addsegment seg_mydisk1, mydata, mydisk1
sp_addsegment seg_mydisk2, mydata, mydisk2

sp_dropsegment "default", mydata, mydisk1
sp_dropsegment system, mydata, mydisk1
sp_dropsegment "default", mydata, mydisk2
sp_dropsegment system, mydata, mydisk2

create table authors (au_id etc.) on seg_mydisk1
create nonclustered index au_index on authors (au_id)

on seg_mydisk2

disk init
name = "mydisk1",
physname = "/dev/rxy1a",
vdevno = 7,
size = 2048

disk init
name = "mydisk2",
physname = "/dev/rxy2a",
vdevno = 8,
size = 1024

Select physical devices to
be used by SQL Server.

Start in master database.

Map SQL Server database
device name to physical

device with disk init

Add the devices mydisk1
and mydisk2 to mydata.

Change to mydata database.

Map segment names to
database device names.

Drop system and default
segments from devices.

Create table on one segment,
and create its index on

the other segment.

3-40 Managing Physical Resources

Creating and Using Segments SYBASE SQL Server Release 10.0

• The segment name must exist in the current database (through
earlier use of sp_addsegment).

The following example adds the database device pubs_dev2 to an
existing segment named bigseg:

sp_extendsegment bigseg, pubs2, pubs_dev2

Since the word “default” is a keyword, if you want to extend the
default segment in your database, you must place the word default
in quotes:

sp_extendsegment "default", mydata, newdevice

Placing Objects on a Segment

The system procedure sp_placeobject does not remove an object from
its allocated segment; however, it causes all further disk allocation
for that object to occur on the segment it specifies. Here is the syntax:

sp_placeobject segment_name , object_name

The following command causes all further disk allocation for the
mytab table to take place on bigseg:

sp_placeobject bigseg, mytab

➤ Note
sp_placeobject does not move an object from one database device to another.

Whatever pages have been allocated on the first device remain allocated;

whatever data was written to the first device remains on the device.

sp_placeobject affects only future space allocations.

To completely move a table, you can drop its clustered index (if one exists), and

create or re-create a clustered index on the desired segment. To completely

move a non-clustered index, drop the index and re-create it on the new

segment.

After you have used sp_placeobject, executing dbcc checkalloc causes the
following message to appear for each object that is split across
segments:

Extent not within segment: Object object_name ,
indid index_id includes extents on allocation page
page_number which is not in segment segment_name .

You can ignore these messages.

System Administration Guide 3-41

SYBASE SQL Server Release 10.0 Creating and Using Segments

Dropping Segments

The stored procedure sp_dropsegment, when used with only a segment
name and the database name, drops the named segment from a
database. You cannot drop a segment as long as it contains database
objects. You must assign the objects to another segment (as described
in the previous note) or you must drop the objects, then drop the
segment. The syntax is:

sp_dropsegment segment_name , dbname

You can also use sp_dropsegment to remove a database device from a
segment, reversing the effects of sp_extendsegment. This syntax is:

sp_dropsegment segment_name , dbname, devname

With three arguments, sp_dropsegment does not drop the segment, it
just drops the given devname from the range of devices that the
segment spans. The following example removes the database device
pubs_dev2 from bigseg:

sp_dropsegment bigseg, pubs2, pubs_dev2

➤ Note
Dropping a segment removes its name from the list of segments in the

database, but it does not remove the database device from the allocation for

that database, nor does it remove objects from the device.

If you drop all of the segments from a database device, the space is still

allocated to the database, but cannot be used for database objects. dbcc
checkcatalog reports “Missing segment in Sysusages segmap.” Use

sp_addsegment “default”, dbname, devname to map the device to the default

segment if you don’t plan to assign it to another segment.

Getting Information about Segments

Two system procedures provide information about segments.
sp_helpsegment lists the segments in the database in which it is
executed, or displays information about a particular segment in the
database. sp_helpdb displays information about the relationship
between devices and segments in a database.

3-42 Managing Physical Resources

Creating and Using Segments SYBASE SQL Server Release 10.0

sp_helpsegment

The system procedure sp_helpsegment, when used without an
argument, displays information about all of the segments in the
database where you execute it:

sp_helpsegment

segment name status
------- ----------------------------- ------
 0 system 0
 1 default 1
 2 logsegment 0
 3 seg1 0
 4 seg2 0

For information about a particular segment, specify the segment
name as an argument. Use quotes when requesting information
about the default segment:

sp_helpsegment "default"

The following example displays information about seg1:

 segment name status
 ------- ---------------------- ------
 3 seg1 0

 device size free_space
 ---------------------- -------------- -----------
 seg_mydisk1 2.0MB 1008

 table_name index_name indid
 ---------------------- -------------------- ------
 authors au_ind 1

In addition to the segment’s number and name, sp_helpsegment
displays its status (1 for the default segment, 0 for others). The names
of the database devices and their sizes are displayed on the next line.
The final line displays information about the tables and indexes on a
segment. In this case, the segment stores the index au_ind for the
authors table. The indid indicates that it is a clustered index.

sp_helpdb

When you execute sp_helpdb within a database, and give that
database’s name, the system procedure displays information about
the segments in the database:

sp_helpdb mydata

System Administration Guide 3-43

SYBASE SQL Server Release 10.0 Segments and System Tables

name db_size owner dbid created status
--------- ---------- ----------- -------------- ------------
mydata 8.0 MB sa 4 May 27, 1993 no options set

device_fragments size usage free kbytes
------------------- ---------- ----------------- -----------
datadev2 4.0 MB data only 3408
logdev 2.0 MB log only 2032
seg_mydisk1 2.0 MB data only 2016

device segment
------------------------------ -------------------------
datadev2 default
datadev2 system
logdev logsegment
seg_mydisk1 seg1

Segments and System Tables

Three system tables store information about segments: the
master..sysusages table, and two system tables in the user database,
sysindexes and syssegments. The system procedure sp_helpsegment uses
these three tables to provide its information. In addition, it finds the
database device name in sysdevices.

When you allocate a device to a database with create database or alter
database, SQL Server adds a row to master..sysusages. The segmap
column in sysusages provides bitmaps to the segments in the
database for each device.

create database also creates the syssegments table in the user database
with these default entries:

segment name status
 ------- --------------- ------
 0 system 0
 1 default 1
 2 logsegment 0

When you add a segment to a database with sp_addsegment, the
procedure:

• Adds a new row to the syssegments table in the user database, and

• Updates the segmap in master..sysusages.

When you create a table or index, SQL Server adds a new row to
sysindexes. The segment column in that table stores the segment
number, showing where the server will allocate new space for the

3-44 Managing Physical Resources

A Segment Tutorial SYBASE SQL Server Release 10.0

object. If you do not specify a segment name when you create the
object, it is placed on the default segment; otherwise it is placed on the
specified segment. If you create a table containing text or image
columns, a second row is also added to sysindexes for the linked list
of text pages; by default, the chain of text pages is stored on the same
segment as the table. An example using sp_placeobject to put the text
chain on its own segment is included later in this chapter.

The name from syssegments is used in create table and create index
statements. The status column indicates which segment is the default
segment.

A Segment Tutorial

Segments provide a flexible tool for allowing System Administrators
to assign objects to particular database devices. For example, you can
add a database device to a database, and improve your system
performance by assigning a particular high-use table to the device.
To achieve these improvements, you must be certain that no other
database objects use the new segment. The following tutorial shows
how to create a user segment, and how to remove all other segment
mappings from the device.

These are important facts to keep in mind when considering how
SQL Server handles segments and devices:

• If you assign the space in fragments, for example, some of it with
create database, and some later pieces with alter database, each
fragment will have an entry in sysusages.

• When an additional fragment of a device is assigned to a database
which has already been assigned a fragment of that device, all the
segments mapped to the existing fragment are mapped to the
new fragment.

• If you use alter database to add space on a device that is new to the
database, the system and default segments are mapped to the new
space.

The tutorial begins with a new database, created with one device for
the database objects, and another for the transaction log:

create database mydata on bigdevice = 4
log on logdev = 2

Now, if you use mydata, and run sp_helpdb, you’ll see:

sp_helpdb mydata

System Administration Guide 3-45

SYBASE SQL Server Release 10.0 A Segment Tutorial

name db_size owner dbid created status
---------- -------- --------- ------ ------------ ---------------
mydata 6.0 MB sa 4 May 27, 1993 no options set

device_fragments size usage free kbytes
---------------------- ------------- --------------- -----------
bigdevice 4.0 MB data only 3408
logdev 2.0 MB log only 2032

device segment
---------------------- ----------------------
bigdevice default
bigdevice system
logdev logsegment

Like all newly created databases, mydata has the segments named
default, system and logsegment. Since the create database statement used
log on, the logsegment is mapped to its own device—logdev, and the
default and system segment are both mapped to bigdevice.

If you add additional space on the same devices to mydata, and then
run sp_helpdb again, you’ll see entries for the added fragments:

use master

alter database mydata on bigdevice = 2
log on logdev = 1

use mydata

sp_helpdb mydata

name db_size owner dbid created status
---------- -------- --------- ------ ------------ ---------------
mydata 9.0 MB sa 4 May 27, 1993 no options set

device_fragments size usage free kbytes
---------------------- ------------- --------------- -----------
bigdevice 2.0 MB data only 2048
bigdevice 4.0 MB data only 3408
logdev 1.0 MB log only 1024
logdev 2.0 MB log only 2032

device segment
---------------------- ----------------------
bigdevice default
bigdevice system
logdev logsegment

Always add log space to log space, and data space to data space. SQL
Server will warn you, and instruct you to use with override if you try to

3-46 Managing Physical Resources

A Segment Tutorial SYBASE SQL Server Release 10.0

allocate a segment that is already in use for data to the log, or vice
versa. Remember that segments are mapped to entire devices, and
not just to the space fragments. If you change any of the segment
assignments on a device, you make the change for all of the
fragments.

When you allocate a new device to the database with alter database—
one that’s not in use by the database—the new fragments are
automatically assigned:

• To the system and default segments, if they are in the on clause, or
if they are default devices, or

• To the log segment, if they are in the log on clause

The following example allocates a new database device that has not
been used by mydata:

use master

alter database mydata on newdevice = 3

use mydata

sp_helpdb mydata

name db_size owner dbid created status
---------- -------- --------- ------ ------------ ---------------
mydata 12.0 MB sa 4 May 27, 1993 no options set

device_fragments size usage free kbytes
---------------------- ------------- --------------- -----------
bigdevice 2.0 MB data only 2048
bigdevice 4.0 MB data only 3408
logdev 1.0 MB log only 1024
logdev 2.0 MB log only 2032
newdevice 3.0 MB data only 3072

device segment
---------------------- ----------------------
bigdevice default
bigdevice system
logdev logsegment
newdevice default
newdevice system

The default and system segments are mapped to the new space. In
some cases, you want the new space for use as default storage space
for create table or create index statements. In that case, this allocation is
fine. However, if you’re adding space in order to assign a table or
index to a specific segment (and therefore to specific devices), drop

System Administration Guide 3-47

SYBASE SQL Server Release 10.0 A Segment Tutorial

the system and default segments from the new fragment, and add
your own segment name.

The following example creates a segment called new_space on
newdevice:

sp_addsegment new_space, mydata, newdevice

Here is just the portion of the sp_helpdb report that has changed, the
portion that lists the segment mapping:

device segment
---------------------------- ------------------
bigdevice default
bigdevice system
logdev logsegment
newdevice default
newdevice new_space
newdevice system

Notice that the default and system segments are still mapped to
newdevice. If you’re planning to use new_space to store a user table or
index for improved performance, and want to insure that other user
objects are not stored on the device by default, drop the default and
system segments with sp_dropsegment:

sp_dropsegment system, mydata, newdevice

sp_dropsegment "default", mydata, newdevice

The quotes around “default” are needed because it’s a Transact-SQL
reserved word.

Here is just the portion of the sp_helpdb report that shows the segment
mapping:

device segment
---------------------------- --------------------
bigdevice default
bigdevice system
logdev logsegment
newdevice new_space

Only new_space is now mapped to newdevice. Users who create
objects can use on new_space to place a table or index on the device
that corresponds to that segment. Since the default segment is not
using that database device, users who create tables and indexes
without using the on clause won’t be placing them on your specially-
prepared device.

3-48 Managing Physical Resources

Other Factors in Using Segments SYBASE SQL Server Release 10.0

If you alter database on newdevice again, the new space fragment
acquires the same segment mapping as the existing fragment of that
device (that is, the new_space segment only).

At this point, if you use create table and name new_space as the
segment, you’ll get results like these from sp_help and sp_helpsegment:

create table mytabl (c1 int, c2 datetime)
on new_space

sp_help mytabl

Name Owner Type
----------------- ----------------- ----------------
mytabl dbo user table

Data_located_on_segment When_created
------------------------------ --------------------
new_space May 27 1993 3:21PM

Column_name Type Length Nulls Default_name Rule_name
------------- --------- ------ ----- ------------ ----------
c1 int 4 0 NULL NULL
c2 datetime 8 0 NULL NULL
Object does not have any indexes.
No defined keys for this object.

sp_helpsegment new_space

segment name status
------- ------------------------------ ------
 3 new_space 0

device size free_space
---------------------- -------------- -----------
newdevice 3.0MB 1528

table_name index_name indid
--------------------- ---------------------- ------
mytabl mytabl 0

Other Factors in Using Segments

Segments and Clustered Indexes

The bottom or leaf level of a clustered index contains the actual data.
By definition, therefore, a table and its clustered index are on the
same segment. If you create a table on one segment, and then create
its clustered index on a different segment, the table travels with its

System Administration Guide 3-49

SYBASE SQL Server Release 10.0 Other Factors in Using Segments

index. The entire table will “leave” the segment on which the table
was created and migrate to the segment where the clustered index is
created. This provides a quick and easy mechanism for moving a
table to another segment in your database.

This example creates a clustered index, without specifying the
segment name, using the same table just created on the new_space
segment in the example above. Checking new_space after the create
index command shows that there are no longer any objects on the
segment:

/* Don’t try this at home */
create clustered index mytabl_cix

on mytabl(c1)

sp_helpsegment new_space

segment name status
------- ------------------------------ ------
 3 myseg 0

device size free_space
------------------- ---------------- -----------
datadev2 2.0MB 1016

If you have placed a table on a segment, and need to create a
clustered index, be sure to use the on segment_name clause, or the table
will migrate to the default segment.

Sharing Space on Segments

When all databases and database objects on a SQL Server share a
default pool of space, any table or index might grow to fill the entire
pool of space. Similarly, if you place several database objects on a
single segment, any of those objects may grow to fill the entire
segment. They cannot grow beyond the devices named by that
segment to contend for space with objects on other devices, but they
will be in contention with each other for space.

Placing Text Pages on a Separate Device

When you create a table with text or image columns, the data is stored
on a separate chain of text pages. A table that contains text or image
columns has an additional entry in sysindexes for the text chain, with
the name column set to the name of the table preceded by the letter
“t” and an indid of 255. You can use sp_placeobject to store the text

3-50 Managing Physical Resources

Information on Storage SYBASE SQL Server Release 10.0

chain on a separate device, giving both the table name, and the name
of the text chain from sysindexes:

sp_placeobject textseg, "mytab.tmytab"

➤ Note
By default, a chain of text pages is placed on the same segment as its table.

After you execute sp_placeobject, whatever pages were previously written on

the old device remain allocated, but all new allocations take place on the new

segment.

Information on Storage

To find the names of the database devices on which a particular
database resides, use the system procedure sp_helpdb with the
database name:

sp_helpdb pubs2

name db_size owner dbid created status
--------- ---------- --------- ---- -------------- --------------
pubs2 2.0 MB sa 5 May 25, 1993 no options set

device_fragments size usage free kbytes
------------------- ------------- ---------------- -----------
pubdev 2.0 MB data and log 288

device segment
---------------------- ----------------------
pubdev default
pubdev logsegment
pubdev system

sp_helpdb reports on the size and usage of the devices in use by the
named database. If you are using the named database, sp_helpdb also
reports on the segments in the database, and the devices that are
named by the segments.

When sp_helpdb is used without arguments, it reports on all the
databases on SQL Server:

sp_helpdb

System Administration Guide 3-51

SYBASE SQL Server Release 10.0 Information on Storage

name db_size owner dbid created status
------------- -------- ----- ---- ------------ -------------------
master 3.0 MB sa 1 Jan 01, 1900 no options set
model 2.0 MB sa 3 Jan 01, 1900 no options set
mydata 4.0 MB sa 7 Aug 25, 1993 no options set
pubs2 2.0 MB sa 6 Aug 23, 1993 no options set
sybsecurity 20.0 MB sa 5 Aug 18, 1993 no options set
sybsystemprocs 10.0 MB sa 4 Aug 18, 1993 trunc log on chkpt
tempdb 2.0 MB sa 2 Aug 18, 1993 select into/bulkcopy

To get a summary on the amount of storage space used by a database,
execute the system procedure sp_spaceused in the database:

sp_spaceused

database_name database_size
------------------------------ -------------
pubs2 2.0 MB

reserved data index_size unused
------------- ------------- --------------- --------
1720 KB 536 KB 344 KB 840 KB

The columns in the report are:

database_size gives the total amount of space allocated to the
database by create database or alter database
commands.

reserved reports the amount of space that has been
allocated to all the tables and indexes that have
been created in the database. (Space is allocated
to database objects inside a database in
increments of one extent, or 8 pages, at a time.)

data and index_size shows how much space has actually been used
by data and indexes.

unused shows the amount of space that has been
reserved but not yet used by existing tables and
indexes.

Adding the values in the unused, index_size, and data columns should
give you the figure in the reserved column. Subtracting reserved from
database_size gives you the amount of unreserved space. This space is
available to new objects or to existing objects which grow beyond the
space that has already been reserved for them.

Running sp_spaceused regularly enables you to monitor the amount of
database space available. For example, if the value of reserved is close
to the total database_size, you are close to running out of space for

3-52 Managing Physical Resources

Information on Storage SYBASE SQL Server Release 10.0

new objects. If unused is also quite small, you are close to running out
of space for additional data as well.

You can also use sp_spaceused with a table name as its parameter, and
get a report on the space used by that table, like this:

sp_spaceused titles

name rowtotal reserved data index_size unused
------ -------- --------- ------- ----------- ------
titles 18 48 KB 6 KB 4 KB 38 KB

The rowtotal column in this report may be very different than the
results of running select count(*) on the table, because sp_spaceused
computes the value with the built-in function rowcnt. This function
uses values stored in the allocation pages that record the average
number of rows per page. These values aren’t updated regularly,
however, so they can be very different for tables with a lot of activity.
The update statistics command, dbcc checktable and dbcc checkdb update
the rows-per-page estimate, so rowtotal will be most accurate after
one of these commands has been run.

It is a good idea to run sp_spaceused regularly on syslogs, since the
transaction log can grow rapidly if there are frequent database
modifications. This is a particular problem if the transaction log is
not on a separate device—in which case it will be competing with the
rest of the database for space.

You may want to write some of your own queries for additional
information about physical storage. For example, to determine the
total number of 2K blocks of storage space that exist on SQL Server,
you can query sysdevices:

select sum(high - low)
from sysdevices
where status in (2, 3)

 7168

A “2” in the status column represents a physical device; a “3”
represents a physical device that is also a default device.

System Administration Guide 4-1

4. Managing SQL Server Logins
and Database Users4

Introduction

This chapter describes methods for managing SQL Server login
accounts and database users. Topics covered include:

• Adding new logins to SQL Server

• Creating groups

• Adding users to databases

• Dropping logins, users, and groups

• Locking SQL Server logins

• Changing user information

• Changing user information such as passwords and group
membership

• Obtaining information about users, groups, and SQL Server
usage

Adding New Users: an Overview

The process of adding new logins to SQL Server, adding users to
databases, and granting them permission to use commands and
database objects is divided between the System Security Officer,
System Administrator, and Database Owner.

The process of adding new users consists of the following steps:

1. A System Security Officer creates a server login account for a
new user is created with sp_addlogin.

2. A System Administrator or Database Owner adds a user to a
database with sp_adduser. This command can also give the user an
alias or assign the user to a group. Groups are added using
sp_addgroup. See ‘‘Creating Groups: sp_addgroup’’ on page 4-5
for more information.

3. A System Administrator, Database Owner, or object owner
grants the user or group specific permissions on specific
commands and database objects. Users or groups can also be
granted permission to grant specific permissions on objects to
other users or groups. See Chapter 5, ‘‘Managing User
Permissions’’ for detailed information on permissions.

4-2 Managing SQL Server Logins and Database Users

Adding Logins to SQL Server SYBASE SQL Server Release 10.0

The following table summarizes the commands and system
procedures used for these tasks.

Choosing a Password

Your password is the first line of defense against SQL Server access by
unauthorized people. SQL Server passwords must be at least six bytes
long and can contain any printable letters, numerals, or symbols.
When you create your own password or one for another user, choose
one that cannot be guessed. Do not use personal information, names
or nicknames of pets or loved ones, or words that appear in the
dictionary. The most secure passwords are ones that combine upper-
and lowercase characters with numbers, punctuation, and accented
characters. Once you select a password, protecting it is your
responsibility. Never give anyone your password and never write it
down where anyone can see it.

Adding Logins to SQL Server

The system procedure sp_addlogin adds new login names to SQL
Server. It does not give the user permission to access any user
databases; the procedure sp_adduser gives users access to specific
databases. Only the System Security Officer can execute sp_addlogin.
Here is its syntax:

sp_addlogin login_name , password [, defdb]
[, deflanguage [, fullname]]]

• The login_name parameter (the new user’s login name) is
required. The login name must follow the rules for identifiers and

Command or
Procedure Task Executed By Where

sp_addlogin Create new logins, assign passwords, default
databases, default language, and full name,

SSO any database

sp_addgroup Create groups DBO or SA user
database

sp_adduser Add users to database, assign aliases, assign
groups

DBO or SA user
database

grant Grant groups or users permission on commands
and database objects

DBO, SA, or
object owner

user
database

Table 4-1: System Procedures for Adding Users to SQL Server and Databases

System Administration Guide 4-3

SYBASE SQL Server Release 10.0 Adding Logins to SQL Server

must be unique on SQL Server. It is highly recommended that the
SQL Server login name be the same as the user’s operating
system login name. This makes logging into SQL Server easier,
since many client programs use the operating system login name
as a default. It also simplifies management of server and
operating system login accounts, and makes it easier to correlate
usage and audit data generated by SQL Server and by the
operating system.

• The password parameter, also required, is a password for the new
user. The password must be at least six bytes long, and can be any
printable letters, numerals, or symbols. A password must be
enclosed in quotation marks in sp_addlogin if:

- It includes characters besides A-Z, a-z, 0-9,_, #, valid single- or
multi-byte alphabetic characters, or accented alphabetic
characters

- It begins with 0-9

See ‘‘Choosing a Password’’ on page 4-2 for guidelines on
choosing secure passwords. A user can change his or her own
password, and a System Security Officer can change any user’s
password, with sp_password.

• defdb specifies the name of the new user’s default database. This
causes the user to start each session on SQL Server in that
database, without having to issue the use command. A System
Administrator can change anyone’s default database with
sp_modifylogin; other users can only change their own.

➤ Note
If you do not specify a user’s default database parameter with sp_addlogin, the

user’s default database is master. Assign default databases other than master
to most users, to discourage users from creating database objects in the

master database.

After you specify the default database, add the user to the
default database with sp_adduser, so that he or she can log in
directly to the default database.

• deflanguage specifies the default language in which this user’s
prompts and messages are displayed. If you omit this parameter,
SQL Server’s default language is used. The System Administrator
can change any user’s default language with sp_modifylogin; other
users can only change their own.

4-4 Managing SQL Server Logins and Database Users

Adding Logins to SQL Server SYBASE SQL Server Release 10.0

• fullname specifies a full name for the user. This can be useful for
documentation and identification purposes. If omitted, no full
name is added. The System Administrator can change any user’s
full name with sp_modifylogin; other users can only change their
own.

The following statement sets up an account for the user “maryd”
with the password “100cents,” the default database (master), the
default language, and no full name:

sp_addlogin "maryd", "100cents"

Quotation marks are not required around character-type parameters
to stored procedures as long as they do not contain spaces,
punctuation marks or Transact-SQL reserved words. However, it is
never wrong to use quotes in sp_addlogin.

Once this statement is executed, “maryd” can log in to the SQL
Server. She is automatically treated as a guest user in master, with
limited permissions, unless she has been specifically given access to
master.

Here’s a statement that sets up a login account and a password
(“rubaiyat”) for user “omar_khayyam,” and makes pubs2 his default
database:

sp_addlogin omar_khayyam, rubaiyat, pubs2

If you wish to specify a full name for a user but use the default
database and language, you must specify null in place of those two
parameters. For example:

sp_addlogin omar, rubaiyat, null, null,
"Omar Khayyam"

As an alternative, you can specify a parameter name, in which case
you do not have to specify all the parameters. For example:

sp_addlogin omar, rubaiyat,
@fullname = "Omar Khayyam"

Effects on System Tables

When you execute sp_addlogin, SQL Server adds a row to
master.dbo.syslogins, assigns a unique server user ID (suid) for the new
user, and fills in other information. When a user logs in, SQL Server
looks in syslogins for the name and password the user gives. The
password column is encrypted with a one-way algorithm and so is not
human-readable.

System Administration Guide 4-5

SYBASE SQL Server Release 10.0 Creating Groups: sp_addgroup

The suid column in syslogins uniquely identifies the user on SQL
Server. A user’s suid remains the same no matter what database he or
she is using. The suid 1 is always assigned to the default “sa” account
that is created when SQL Server is installed. Other users’ server user
IDs are small integers assigned consecutively by SQL Server each
time sp_addlogin is executed.

Permissions Required

Only a System Security Officer can execute sp_addlogin.

Creating Groups: sp_addgroup

Groups provide a convenient way to grant and revoke permissions
to more than one user in a single statement. Groups enable you to
provide a collective name to a group of users. They are especially
useful if you administer a SQL Server installation that has large
numbers of users.

Every user is a member of the group “public,” and can be a member
of one other group. (Users remain in “public” whether or not they
belong to another group.)

It is probably most convenient to create groups before adding users
to a database since the sp_adduser procedure can assign users to
groups as well as adding them to the database. A System
Administrator or the Database Owner can create a group at any time
with sp_addgroup. The syntax for sp_addgroup is:

sp_addgroup groupname

The group name, a required parameter, must follow the rules for
identifiers. For example, to set up the Senior Engineering group, use
the following command while using the database to which you wish
to add the group:

sp_addgroup senioreng

The System Administrator can assign or re-assign users to groups
with sp_changegroup.

Permissions Required

sp_addgroup can be executed by the Database Owner or by a System
Administrator.

4-6 Managing SQL Server Logins and Database Users

Adding Users to Databases: sp_adduser SYBASE SQL Server Release 10.0

Effects on System Tables

The sp_addgroup system procedure adds a row to sysusers in the
current database. In other words, each group in a database—as well
as each user—has an entry in sysusers.

Adding Users to Databases: sp_adduser

The procedure sp_adduser adds a user to a specific database. The user
must already have a SQL Server login. Here is the syntax for
sp_adduser:

sp_adduser login_name [, name_in_db [, groupname]]

• login_name is the login name of an existing user. It is required.

• name_in_db allows you to specify a name different from the login
name by which the user is to be known inside the database. It is
optional.

This feature is supplied to accommodate users’ preferences. For
example, if there are five SQL Server users named Mary, all of
them must have different login names. Mary Doe might log in as
“maryd,” Mary Jones as “maryj,” and so on. However, if the
Marys don’t use the same databases, each might prefer to be
known simply as “mary” inside a particular database.

If no name_in_db parameter is given, the name inside the
database is the same as login_name.

Be careful not to confuse this capability with the alias
mechanism described in ‘‘Using Aliases in Databases’’ on page
4-16, which maps the identity and privileges of one user to
another.

• groupname, also optional, is the name of an existing group in the
database. If you do not specify a group name, the user is made a
member of the default group “public”. Users remain in “public”
even if they are a member of another group. See ‘‘Changing a
User’s Group Membership: sp_changegroup’’ on page 4-15 for
information on modifying a user’s group membership.

Here’s a command that the owner of the pubs2 database could give to
allow “maryh” of the (already existing) engineering group to access
pubs2:

sp_adduser maryh, mary, eng

System Administration Guide 4-7

SYBASE SQL Server Release 10.0 Adding Users to Databases: sp_adduser

Here’s how to give “maryd” access to pubs2, with her name in the
database the same as her login name, and making her a member of
the “public” group:

sp_adduser maryd

Here’s how to add a user and put the user in a group, but without
different names, using null in place of a new user name:

sp_adduser maryj, null, eng

Users who have access to a database still need permission to do
things inside it: to read data, modify data, and use certain
commands. These permissions are set up by the owners of the
database objects or user databases with the grant and revoke
commands. They are discussed in Chapter 5, ‘‘Managing User
Permissions’’.

Effects on System Tables

The sp_adduser system procedure adds a row to the sysusers system
table in the current database. Once a user has an entry in the sysusers
table of a database, he or she:

• Can issue the use command and access that database,

• Will use that database by default, if the default database
parameter was issued as part of sp_addlogin, or

• Can use sp_modifylogin to make that database the default.

Permissions Required

sp_adduser can be executed by the Database Owner and System
Administrator.

Adding a “guest” User

Creating a user named “guest” in a database enables any user with a
SQL Server account to access the database as a guest user. If a user
issues the “use database_name” command, and his or her name is not
found in the database’s sysusers table, SQL Server looks for a guest
user. If there is one, the user is allowed to access the database, with
the permissions of the guest user.

The Database Owner can add a guest entry to the sysusers table of
any user database with the system procedure sp_adduser, like this:

4-8 Managing SQL Server Logins and Database Users

Adding Users to Databases: sp_adduser SYBASE SQL Server Release 10.0

sp_adduser guest

The guest user can be removed with sp_dropuser, as discussed in
‘‘Dropping Database Users: sp_dropuser’’ on page 4-11.

If you drop the guest user from the master database, server users who
have not yet been added to any databases will be unable to log into
SQL Server.

“guest” User Permissions

When you first add the username “guest” to a database, “guest”
inherits the privileges of “public”. The Database Owner and the
owners of database objects can change these permissions as they
wish, using grant and revoke, to make the privileges of “guest” either
more restrictive or less restrictive than those of “public.” See Chapter
5, ‘‘Managing User Permissions’’, for a description of the privileges
“public” has.

When you install SQL Server, master..sysusers contains a guest entry.
The installation script for the pubs2 database also contains a guest
entry for its sysusers table.

The “guest” User in User Databases

In user databases, the Database Owner is responsible for setting up
any guest mechanisms that are needed. Adding a guest user to a user
database allows an owner to permit all SQL Server users to use that
database without having to use sp_adduser to explicitly name each one
as a database user.

You can use the guest mechanism to restrict access to database
objects while allowing access to the database.

For example, the owner of the titles table could grant select
permission on bugs to all database users except “guest” by executing
the following three commands:

grant select on titles to public

sp_adduser guest

revoke all on titles from guest

If you wish to grant permissions to “public”, but do not wish to grant
these permissions to “guest”, be sure to issue a revoke command after
granting permission to “public”. The group “public” includes all
users.

System Administration Guide 4-9

SYBASE SQL Server Release 10.0 Adding Users to Databases: sp_adduser

The “guest” User in pubs2

The “guest” user entry in pubs2, the sample database, allows new
SQL Server users to follow the examples in the Transact-SQL User’s
Guide and to engage in a certain amount of experimentation. The
guest in pubs2 is given a wide range of privileges:

• select permission and data modification permission on all of the
user tables

• execute permission on all of the procedures

• create table, create view, create rule, create default and create procedure
permission

Visitor Accounts on SQL Server

As another method of accommodating visiting users on SQL Server,
the System Security Officer can use sp_addlogin to enter a row in
master..syslogins with a login name and password that visiting users
are instructed to use (for example, “visitor”). Typically, such users
are granted very restricted permissions. A default database may be
assigned. Allowing more than one person to use the visitor account
does not provide good individual accountability, however, since the
actions of individual users of the visitor account cannot be audited.

Be careful not to confuse such visitor accounts with the guest user
mechanism described earlier.

Adding Remote Users

You can allow users on another SQL Server to execute stored
procedures on your server by enabling remote access. Working with
a System Administrator of the remote server, you can also allow
users of your server to execute remote procedure calls to the remote
server. To enable remote procedure calls, both the local and the
remote server must be configured, following several steps. See
Chapter 15, ‘‘Managing Remote Servers’’, for information on setting
up remote servers and adding remote users.

Granting Permissions to Database Users

The final step in adding database users is granting them permission
to use commands and database objects. See Chapter 5, ‘‘Managing
User Permissions’’.

4-10 Managing SQL Server Logins and Database Users

Dropping Logins, Users, and Groups SYBASE SQL Server Release 10.0

Dropping Logins, Users, and Groups

The following system procedures allow a System Administrator or
Database Owner to drop logins, users and groups.

Dropping Logins: sp_droplogin

The system procedure sp_droplogin denies a user access to SQL Server.
It may be easier to lock logins rather than delete them, for these
reasons:

• You cannot drop a login who is a user in any database, and you
cannot drop a user from a database if the user owns any objects in
that database or has granted any permissions on objects to other
users.

• SQL Server may reuse the dropped login account’s server user ID
(suid) when the next login account is created. This only occurs
when the dropped login holds the highest suid in syslogins, but
could compromise accountability if execution of sp_droplogin is not
being audited.

• You cannot drop the last remaining System Security Officer’s or
System Administrator’s login account.

See ‘‘Locking SQL Server Logins: sp_locklogin’’ on page 4-11 for
information on locking logins.

Here is the syntax for sp_droplogin:

sp_droplogin login_name

System
Procedure Task Executed By Where

sp_droplogin Drop user from SQL
Server

SA master

sp_dropuser Drop user from database DBO or SA user
database

sp_dropgroup Drop group from database DBO or SA user
database

Table 4-2: Dropping Logins, Users, and Groups

System Administration Guide 4-11

SYBASE SQL Server Release 10.0 Locking SQL Server Logins: sp_locklogin

Dropping Database Users: sp_dropuser

The system procedure sp_dropuser denies a SQL Server user access to
the database in which it is executed. (If there is a “guest” user defined
in that database, the user can still access it as “guest”.)

Here is the syntax for dropping a user from a database:

sp_dropuser name_in_db

name_in_db is usually the login name, unless another name has been
assigned.

sp_dropuser can be executed only by the Database Owner or a System
Administrator.

➤ Note
You cannot drop a user who owns objects. Since there is no command to

transfer ownership of objects, you must drop objects owned by a user before

you drop the user with sp_dropuser. If you wish to deny access to a user who

owns objects, use sp_locklogin to lock his or her account.

You also cannot drop a user who has granted permissions to other users.

sp_dropuser displays an informational message when this happens. Use revoke
with cascade to revoke permissions from all users who were granted

permissions by the user to be dropped, then drop the user. You must then re-

grant permissions to the users, if appropriate.

Dropping Groups: sp_dropgroup

To drop a group, use sp_dropgroup and give the group name:

sp_dropgroup groupname

You cannot drop a group that has members. If you try to do so, the
error report displays a list of the members of the group you are
attempting to drop. To remove users from a group, execute
sp_changegroup, discussed in ‘‘Changing a User’s Group Membership:
sp_changegroup’’ on page 4-15.

Locking SQL Server Logins: sp_locklogin

Locking a SQL Server login account prevents that user from logging
in. You may prefer to lock accounts instead of dropping them for

4-12 Managing SQL Server Logins and Database Users

Changing User Information SYBASE SQL Server Release 10.0

reasons discussed in ‘‘Dropping Logins: sp_droplogin’’ on page 4-10.
The sp_locklogin system procedure locks and unlocks accounts, or
displays a list of locked accounts.

The syntax is:

sp_locklogin [login_name, "{lock | unlock}"]

• login_name is the name of the account to be locked or unlocked. It
must be an existing, valid account.

• lock | unlock specifies whether the account is to be locked or
unlocked.

Using sp_locklogin with no parameters displays a list of all locked
logins.

You can lock an account that is currently logged in. You will receive
a warning that the account has been locked, but the user is not locked
out of the account until he or she logs out. You can lock the account
of a Database Owner, and a locked account can own objects in
databases. In addition, you can use sp_changedbowner to specify a
locked account as the owner of a database.

SQL Server ensures that there is always at least one unlocked System
Security Officer’s account and one unlocked System Administrator’s
account.

Permissions Required

Only System Administrators and System Security Officers can
execute sp_locklogin.

Changing User Information

Additional system procedures allow you to change any of the user
information added with the commands discussed earlier in this
chapter. For example, sp_modifylogin and sp_password change default
databases and passwords for SQL Server users.

System Administration Guide 4-13

SYBASE SQL Server Release 10.0 Changing User Information

The system procedures described in Table 4-3 change aspects of
users’ logins and database usage.

Changing Passwords: sp_password

Your site may choose to use the password expiration interval configuration
variable to establish a password expiration interval to force all
SQL Server users to change their passwords on a regular basis. (See
‘‘password expiration interval’’ on page 12-37 for information.) Even
if you do not use password expiration interval, for security reasons it is
important that users change their passwords from time to time.

The column pwdate in syslogins records the date of the last password
change. This query selects all login names whose passwords have
not been changed since January 30th, 1994:

select name, pwdate
from syslogins
where pwdate < "Jan 30 1994"

A user can change passwords at any time with the system procedure
sp_password. The System Security Officer can use this system
procedure to change any other user’s password. The syntax is:

sp_password caller_passwd , new_passwd [, login_name]

• caller_passwd is the password of the login account that is currently
executing sp_password. When you are changing your own
password, this is your old password. When a System Security
Officer uses sp_password to change another user’s password,
caller_passwd is the password of the System Security Officer.

System Procedure Task Executed By Where

sp_password Change another user’s password

Change own password

SSO

user

any
database

sp_changegroup Change group assignment of a user SA, DBO user
database

sp_modifylogin Change a login account’s default database, default
language, or full name

Change own default database, default language,
or full name

SA

user

any
database

Table 4-3: System Procedures for Changing User Information

4-14 Managing SQL Server Logins and Database Users

Changing User Information SYBASE SQL Server Release 10.0

• new_passwd is the new password for the user executing
sp_password, or for the user indicated by login_name. The password
must be at least six bytes long, and can be any printable letters,
numerals, or symbols. A password must be enclosed in quotation
marks if:

- It includes characters other than A-Z, a-z, 0-9, _, #, valid single-
or multi-byte alphabetic characters, or accented alphabetic
characters

- It begins with 0-9

• See ‘‘Choosing a Password’’ on page 4-2 for guidelines on
selecting a password.

• login_name may only be used by a System Security Officer to
change another user’s password.

For example, a user can change her password from “3blindmice” to
“2mediumhot” with this command:

sp_password "3blindmice", "2mediumhot"

These passwords are enclosed in quotes because they begin with
numerals.

In the following example, the System Security Officer whose
password is “2tomato” changes Victoria’s password to “sesame1”:

sp_password "2tomato", sesame1, victoria

Null Passwords

You may not assign a null password. However, when SQL Server is
installed, the default “sa” account has a null password. The
following example changes a null password to a valid one:

sp_password null, "16tons"

Note that “null” is not enclosed in quotes.

Permissions Required

All users can use sp_password to change their own passwords. Only a
System Security Officer can use it to change another user’s
password.

Changing User Defaults with sp_modifylogin

The sp_modifylogin system procedure allows a user to change his or her
default database, default language, or full name at any time. The

System Administration Guide 4-15

SYBASE SQL Server Release 10.0 Changing User Information

System Administrator can use sp_modifylogin to change these for any
user. The syntax is:

sp_modifylogin login_name, option, value

• login_name is the name of the user whose account you are
modifying.

• option specifies the option that you are changing. The options are
listed in Table 4-4, and are described in more detail in the sections
following.

• value is the new value for the specified option.

After you execute sp_modifylogin to change the default database, the
user is connected to the new default database the next time he or she
logs in. However, sp_modifylogin does not automatically give the user
access to the database. Unless the Database Owner has set up access
with sp_adduser, sp_addalias, or with a guest user mechanism, the user
is connected to master even after his or her default database has been
changed.

Examples

This example changes the default database for “anna” to pubs2:

sp_modifylogin anna, defdb, pubs2

This example changes the default language for “claire” to French:

sp_modifylogin claire, deflanguage, french

This example changes the full name for “clemens” to “Samuel
Clemens.”

sp_modifylogin clemens, fullname, "Samuel Clemens"

Changing a User’s Group Membership: sp_changegroup

The System Administrator can use the system procedure
sp_changegroup to change an existing user’s group affiliation. At any

Option Definition
defdb The “home” database to which the user is connected when he

or she logs in.
deflanguage The official name of the user’s default language, as stored in

master..syslanguages.
fullname The user’s full name.

Table 4-4: Options for sp_modifylogin

4-16 Managing SQL Server Logins and Database Users

Using Aliases in Databases SYBASE SQL Server Release 10.0

one time, each user can be a member of only one group other than
“public,” of which all users are always members. When new users
are added to the database, they are assigned to the group “public” as
well as any group specified with the sp_adduser procedure.

Before you execute sp_changegroup:

• The group must exist. (Use sp_addgroup to create a group.)

• The user must have access to the current database (must be listed
in sysusers).

The syntax for sp_changegroup is:

sp_changegroup grpname , name_in_db

For example, here’s how you’d change Jim from his current group to
the group “manage”:

sp_changegroup manage, jim

To remove a user from a group without assigning the user to another
group, you must change the group affiliation to “public”:

sp_changegroup "public", jim

The name “public” must be in quotes because it is a reserved word.
All users are always members of “public.” This command reduces
Jim’s group affiliation to “public” only.

When a user changes from one group to another, the user loses all
permissions that he or she had as a result of belonging to the old
group. That user gains the permissions that have been granted to the
new group.

The assignment of users into groups can be changed at any time.

Using Aliases in Databases

The alias mechanism allows you to treat more than one person as the
same user inside a database, so that they all have the same privileges.
It is often used so that several users can assume the role of Database
Owner. The alias mechanism can also be used to set up a collective
user identity, within which the identities of individual users can be
traced by auditing their activities.

For example, say several vice presidents want to use a database with
identical privileges and ownerships. One way to accomplish this is to
add a login named “vp” to SQL Server and the database; each vice
president logs in as “vp”. The problem with this method is that there
is no way to tell the individual users apart. The other approach is to

System Administration Guide 4-17

SYBASE SQL Server Release 10.0 Using Aliases in Databases

alias all the vice presidents, each of whom has his or her own SQL
Server account, to the database user name “vp”.

The following system procedures are used to manage aliases:

Adding Aliases: sp_addalias

Here’s the syntax for sp_addalias:

sp_addalias login_name , name_in_db

• login_name is the name of the user who wants an alternate
identity in the current database. This user must have an account
on SQL Server but cannot be a user in the current database.

• name_in_db is the name of the database user to whom the first
user wishes to be linked. This name must exist in both
master..syslogins and in sysusers in the current database. Both
parameters are required.

Executing sp_addalias maps the user with the specified login name to
the user with the specified name_in_db. It does this by adding a row
to the system table sysalternates.

When a user tries to use a database, SQL Server checks for the user’s
server user ID number (suid) in sysusers. If it is not found, SQL Server
then checks sysalternates. If the user’s suid is found there, mapped to
a database user’s suid, the first user is treated as the second user
while using the database.

As an example, suppose that Mary owns the database. She wishes to
allow both Jane and Sarah to use the database as if they were its
owner. Jane and Sarah have logins on SQL Server but are not
authorized to use Mary’s database. Mary executes these commands:

sp_addalias jane, dbo
exec sp_addalias sarah, dbo

Now both Jane and Sarah can access Mary’s database, and be
recognized as its owner.

System
Procedure Task Executed By Where

sp_addalias Add an alias for a user DBO or SA user database

sp_dropalias Drop an alias DBO or SA user database

Table 4-5: System Procedures for Managing Aliases

4-18 Managing SQL Server Logins and Database Users

Using Aliases in Databases SYBASE SQL Server Release 10.0

Dropping Aliases: sp_dropalias

The system procedure sp_dropalias drops the mapping of an alternate
suid to a user ID, deleting the relevant row from sysalternates. Its
syntax is:

sp_dropalias login_name

login_name is the name of the user who was mapped to another user.
Once a user’s alias is dropped, the user no longer has access to the
database, unless his or her name is then added to sysusers (with
sp_adduser) or the database has a “guest” user in sysusers.

Getting Information on Aliases

To display information about aliases, use the sp_helpuser procedure.
Here’s an example:

sp_helpuser dbo

Users_name ID_in_db Group_name Login_name Default_db
---------- -------- ---------- ---------- ---------
dbo 1 public sa master

(1 row affected)

Users aliased to user.
Login_name

andy
christa
howard
linda

(4 rows affected)

System Administration Guide 4-19

SYBASE SQL Server Release 10.0 Getting Information on Users

Getting Information on Users

The following procedures allow users to obtain information about
users, groups and current SQL Server usage.

Getting Reports on SQL Server Users and Processes: sp_who

The system procedure sp_who reports information on current users
and processes on SQL Server. Its syntax is:

sp_who [login_name | " spid "]

login_name is the user’s SQL Server login name. If you give a login
name, sp_who reports information on processes being run by the
specified user.

spid is the number of a specific process. Enclose it in quotes because a
character type argument is expected.

For each process being run, sp_who reports the server process ID, its
status, the login name of the process user, the name of the host
computer, the server process ID of a process that’s blocking this one
(if any), the name of the database, and the command being run.

If you do not give a login name, sp_who reports on processes being
run by all users.

Here’s an example of the results of executing sp_who without a
parameter:

Procedure Function

sp_who Reports on current SQL Server users and processes

sp_displaylogin Displays information about login accounts

sp_helpuser Reports on users and aliases in a database

sp_helpgroup Reports on groups within a database

Table 4-6: System Procedures that Report on SQL Server Users and Groups

4-20 Managing SQL Server Logins and Database Users

Getting Information on Users SYBASE SQL Server Release 10.0

spid status loginame hostname blk dbname cmd
------ -------- -------- -------- --- ------ ----------------
 1 running sa sunbird 0 pubs2 SELECT
 2 sleeping NULL 0 master NETWORK HANDLER
 3 sleeping NULL 0 master MIRROR HANDLER
 4 sleeping NULL 0 master AUDIT PROCESS
 5 sleeping NULL 0 master CHECKPOINT SLEEP

(5 rows affected, return status = 0)

For all system processes, sp_who reports NULL for the login_name.

Getting Information about Login Accounts: sp_displaylogin

sp_displaylogin displays information about a specified login account.
The syntax is:

sp_displaylogin [login_nam e]

login_name is the user login account about which you want
information. If you wish to display information about your own
login, you do not need to specify login_name.

Only a System Administrator or System Security Officer can use
sp_displaylogin (with the login_name parameter) to get information
about other logins.

sp_displaylogin displays the following information about any login
account:

Server user ID
Login name
Full name
Any roles granted
Whether the account is locked
Date that the password was last changed

sp_displaylogin displays all roles that have been granted to you, so that
even if you have made a role inactive with the set command, it is
displayed.

Getting Information about Database Users: sp_helpuser

The system procedure sp_helpuser reports information on authorized
users of the current database. Its syntax is:

sp_helpuser [name_in_db]

System Administration Guide 4-21

SYBASE SQL Server Release 10.0 Getting Information on Users

The parameter, the database name of a user, is optional. If you give a
user’s name, sp_helpuser reports information on that user. If you don’t
give a name, it reports on all users.

The procedure reports the user’s name in the database, the user ID,
the user’s login name, and the group name. Here’s an example of the
results of executing sp_helpuser without a parameter in the database
pubs2:

sp_helpuser

Users_name ID_in_db Group_name Login_name Default_db
---------- -------- ---------- ---------- ----------
dbo 1 public sa master
marcy 4 public marcy pubs2
sandy 3 public sandy pubs2
judy 5 public judy pubs2
linda 6 public linda master
anne 2 public anne pubs2
jim 7 senioreng jim master

(7 rows affected)

Finding User Names and IDs

To find a user’s server user ID or login name, use the system
functions suser_id and suser_name.

The arguments for these system functions are optional. If you don’t
give one, SQL Server displays information about the current user.
For example, here we give names and numbers from the sp_helpuser
example above:

select suser_name(3), suser_id("sandy")

---------------- ------
sandy 3

Here the System Administrator issues the commands without
arguments:

select suser_name(), suser_id()

Function Argument Result
suser_id ([“server_user_name”]) server user ID
suser_name ([server_user_ID]) server user name

(login name)

Table 4-7: System Functions suser_id and suser_name

4-22 Managing SQL Server Logins and Database Users

Getting Information about Usage: Chargeback Accounting SYBASE SQL Server Release 10.0

---------------- ------
sa 1

To find a user’s ID number or name inside a database, use the system
functions user_id and user_name.

The arguments for these system functions are optional. If you don’t
give one, SQL Server displays information about the current user.
For example:

select user_name(10)
select user_name()
select user_id("joe")

Getting Information about Usage: Chargeback Accounting

When a user logs into SQL Server, the server begins accumulating
CPU and I/O usage for that user. Using this information, SQL Server
can report total usage for an individual or for all users. Information
for each user is kept in the syslogins system table in the master
database.

A System Administrator can configure the frequency with which
usage statistics are updated by setting the configuration variables cpu
flush and i/o flush. Whenever the user logs out of a SQL Server session
or accumulates more CPU or I/O usage than the configured cpu flush
or i/o flush value, the new totals are written to syslogins.

System Procedures for Reporting Current Usage Statistics

The System Administrator can use either of the system procedures
sp_reportstats or sp_clearstats to get current total usage for individuals
or for all users on a SQL Server. To get one user’s totals, use the SQL
Server login as a parameter; to get the total for all users, use
sp_clearstats or sp_reportstats with no parameters.

Using sp_reportstats

sp_reportstats displays a report of current accounting totals for SQL
Server users. It reports total CPU and total I/O, as well as the

Function Argument Result
user_id ([“db_user_name”]) user ID
user_name ([db_user_ID]) user name

Table 4-8: System Functions user_id and user_name

System Administration Guide 4-23

SYBASE SQL Server Release 10.0 Getting Information about Usage: Chargeback Accounting

percentage of those resources used. It does not record statistics for
processes with an suid of 1 (the “sa” login), checkpoint, network, and
mirror handlers.

Using sp_clearstats

SQL Server continues to accumulate CPU and I/O statistics until you
clear the totals from syslogins by running sp_clearstats. sp_clearstats
initiates a new accounting interval for SQL Server users. It executes
sp_reportstats to print out statistics for the previous period and clears
syslogins of the accumulated CPU and I/O statistics.

Choose the length of your accounting interval by deciding how you
wish to use the statistics at your site. To do monthly cross-
department charging for percentage of SQL Server CPU and I/O
usage, for example, the System Administrator would run sp_clearstats
once a month.

For detailed information on these stored procedures, see Volume 2 of
the SQL Server Reference Manual.

Configuration Variables for Chargeback Accounting

Two configuration variables allow a System Administrator to decide
how often accounting statistics are added to syslogins:

• cpu flush specifies how many machine clock ticks to accumulate
before adding to syslogins. To find out how many microseconds a
tick is on your system, run this query while logged into SQL
Server:

select @@timeticks

• i/o flush specifies how many read or write I/Os to accumulate
before flushing to syslogins. I/O and CPU statistics for an
individual user are written out whenever the user exits a SQL
Server session or accumulates more CPU or I/O usage than these
values.

The minimum value allowed for either variable is 1; the maximum
value allowed is 2147483647. The default value for cpu flush is 300 and
the default value for i/o flush, 1000.

To set these values, use the sp_configure command:

sp_configure "cpu flush", 600

or:

sp_configure "i/o flush", 2000

4-24 Managing SQL Server Logins and Database Users

Getting Information about Usage: Chargeback Accounting SYBASE SQL Server Release 10.0

Next, run the reconfigure command to change the configuration
values.

System Administration Guide 5-1

5. Managing User Permissions

Introduction

The SQL commands grant and revoke control SQL Server’s command
and object protection system. You can give various kinds of
permissions to users, groups, and roles with the grant command, and
rescind them with the revoke command. grant and revoke are used to
specify which users can issue which commands and perform which
operations on which tables, views, or columns. The terms granting,
assigning privileges, and permissions are used to describe the use
of the grant and revoke commands.

Some commands can be used at any time by any user, with no
permission required. Others can be used only by users of certain
status (for example, only by a System Administrator) and are not
transferable.

The ability to assign permissions for the commands that can be
granted and revoked is determined by each user’s status (as System
Administrator, Database Owner, or database object owner), and by
whether or not a particular user has been granted a permission with
the option to grant that permission to other users.

To supplement and complement the grant and revoke commands, you
can use views and stored procedures as a security mechanism. This
is discussed in ‘‘Permissions on Views and Stored Procedures’’ on
page 5-20.

Permission Summary

System Administrators operate outside of the command and object
protection system, and have all permissions on commands and
objects at all times.

Database Owners do not automatically receive permissions on
objects owned by other users, but they can impersonate other users
in their database at any time with the setuser command, temporarily
assuming their permissions. Also, a Database Owner can
permanently acquire permission on a given object by assuming the
identity of the object owner with the setuser command and then
issuing the appropriate grant or revoke statements. The setuser
command is discussed in more detail later in this chapter.

5

5-2 Managing User Permissions

Introduction SYBASE SQL Server Release 10.0

For permissions that default to “public,” no permission is required—
that is, no grant or revoke statements need ever be written.

Table 5-1 summarizes the SQL Server protection system. The type of
user listed as the one to whom the command defaults is the “lowest”
level of user to which the permission is automatically granted. This
user can grant the permission to other users or revoke it from other
users, if it is transferable.

This table does not include System Security Officers. The System
Security Officer does not have any special permissions on commands
and objects, only on certain system procedures.

Command and Object Permissions

Statement

Defaults To Can Be
Granted/Revoked

System
Admin. Operator Database

Owner
Object
Owner Public Yes No N/A

alter database • (1)

alter table • •

begin transaction • •

checkpoint • •

commit transaction • •

create database • •

create default • •

create index • •

create procedure • •

create rule • •

create table • (2) • (2)

create trigger • •

create view • •

dbcc • •

(1) Transferred with database ownership
(2) Public can create temporary tables, no permission
required
(3) If a view, permission defaults to view owner
(4) Defaults to stored procedure owner

(5) Transferred with select permission
(6) Transferred with update permission
No means use of the command is always
restricted
N/A means use of the command is never
restricted

Table 5-1: Command and Object Permissions

System Administration Guide 5-3

SYBASE SQL Server Release 10.0 Introduction

delete • (3) •

disk init • •

disk mirror • •

disk refit • •

disk reinit • •

disk remirror • •

disk unmirror • •

drop (any object) • •

dump database • • •

dump transaction • • •

execute •(4) •

grant on object • •

grant command • •

insert • (3) •

kill • •

load database • • •

load transaction • • •

print • •

raiserror • •

readtext • (5)

reconfigure • •

references • •

revoke on object • •

revoke command • •

Command and Object Permissions

Statement

Defaults To Can Be
Granted/Revoked

System
Admin. Operator Database

Owner
Object
Owner Public Yes No N/A

(1) Transferred with database ownership
(2) Public can create temporary tables, no permission
required
(3) If a view, permission defaults to view owner
(4) Defaults to stored procedure owner

(5) Transferred with select permission
(6) Transferred with update permission
No means use of the command is always
restricted
N/A means use of the command is never
restricted

Table 5-1: Command and Object Permissions (continued)

5-4 Managing User Permissions

Types of SQL Server Users and Their Privileges SYBASE SQL Server Release 10.0

Types of SQL Server Users and Their Privileges

SQL Server’s command and object permission system recognizes
these types of users:

• System Administrators

• System Security Officers

• Operators

• Owners of databases

• Owners of database objects

• Other users (also known as “public”)

rollback transaction • •

save transaction • •

select • (3) •

set • •

setuser • •

shutdown • •

truncate table • •

update • (3) •

update statistics • •

writetext • (6)

Command and Object Permissions

Statement

Defaults To Can Be
Granted/Revoked

System
Admin. Operator Database

Owner
Object
Owner Public Yes No N/A

(1) Transferred with database ownership
(2) Public can create temporary tables, no permission
required
(3) If a view, permission defaults to view owner
(4) Defaults to stored procedure owner

(5) Transferred with select permission
(6) Transferred with update permission
No means use of the command is always
restricted
N/A means use of the command is never
restricted

Table 5-1: Command and Object Permissions (continued)

System Administration Guide 5-5

SYBASE SQL Server Release 10.0 Types of SQL Server Users and Their Privileges

Privileges of System Administrators

System Administrators are special users who handle tasks not
specific to applications. SQL Server recognizes a System
Administrator as a super-user who works outside SQL Server’s
command and object protection system.

The role of System Administrator is usually granted to individual
SQL Server logins. This provides a high degree of individual
accountability because all actions taken by that user can be traced to
his or her individual server user ID. If the server administration tasks
at your site are few enough that they are performed by a single
individual, you may instead choose to use the “sa” account that is
installed with SQL Server. At installation, “sa” has permission to
assume the System Administrator, System Security Officer, and
Operator roles. Any user who knows the “sa” password can log into
that account and assume the System Administrator role.

The fact that a System Administrator operates outside the protection
system serves as a safety precaution. For example, if the Database
Owner accidentally deletes all the entries in the sysusers table, the
System Administrator can fix things up (provided, of course, you are
making regular backups!).

There are several commands that only a System Administrator can
issue—they cannot be granted to any other user. They include:
reconfigure, disk init, disk refit, disk reinit, the disk mirroring commands,
shutdown and kill.

Permissions for Creating Databases

Only a System Administrator can grant permission to use the create
database command. The grant command for permission on create
database must be issued from master. In many installations, the System
Administrator maintains a monopoly on create database permission in
order to centralize control of database placement and database
device space allocation.

In such situations, a System Administrator creates new databases on
behalf of other users, and then transfers ownership to the
appropriate user. To create a database that is to be owned by another
user, the System Administrator issues the create database command,
switches to the new database with the use command, and then
executes the system procedure sp_changedbowner. System
Administrators can, however, grant permission to create databases if
that is desired.

5-6 Managing User Permissions

Types of SQL Server Users and Their Privileges SYBASE SQL Server Release 10.0

Privileges of System Security Officers

System Security Officers perform security-sensitive tasks in SQL
Server. These tasks include managing logins (including login aliases
and group set-up), granting roles, and changing passwords. System
Security Officers do not have special permissions on database
objects.

System Security Officers can repair any damage inadvertently done
to the protection system by a user. For example, if the Database
Owner forgets his or her password, a System Security Officer can
change the password to allow the Database Owner to log in.

Privileges of Operators

Users who have been granted the Operator role can back up and
restore databases on a server-wide basis without having to be the
owner of each one. The Operator role allows a user to use these
commands on any database:

dump database
dump transaction
load database
load transaction

Database Owners also have dump and load permissions on the
databases they own. System Administrators can dump and load all
databases.

Privileges of Database Owners

Database owners and System Administrators are the only users who
can grant command permissions to other users.

The owner of a database has full privileges to do anything inside that
database, and must explicitly grant permissions to other users.

Here are the permissions that are automatically granted to the owner
of a database, and that cannot be transferred to others (except that
the dump and load commands are granted to users with the
Operator role):

checkpoint
dbcc
setuser
dump database
dump transaction

System Administration Guide 5-7

SYBASE SQL Server Release 10.0 Types of SQL Server Users and Their Privileges

load database
load transaction
drop database
grant and revoke command permissions

Database owners can grant permissions on the following commands
to other users:

create table
create default
create rule
create procedure
create view
grant and revoke permissions on system tables
grant and revoke select, insert, delete, update, references, and execute
 permissions on database objects

Permissions on System Tables

The installation script supplied by SQL Server sets permissions on
the system tables in a user database so that all database users can
read them.

However, the default situation is that no users—including Database
Owners—can modify the system tables directly. Instead, the system
stored procedures supplied with SQL Server modify the system
tables. This helps guarantee integrity.

A System Administrator can change this situation so that ad hoc
modifications to the system tables are allowed with the system
procedure sp_configure and the reconfigure command. See ‘‘allow
updates’’ on page 12-26.

Permissions on System Procedures

Since system procedures are stored in the sybsystemprocs database,
their permissions are also set there.

Security-related system procedures can only be run by System
Security Officers. Certain other system procedures can only be run
by System Administrators.

Some of the system procedures can be run only by Database Owners.
These procedures make sure that the user executing the procedure is
the owner of the database from which they are being executed.

Other system procedures (for example, all the sp_help procedures) can
be executed by any user who has been granted permission—but this
permission must be granted in sybsystemprocs. In other words, a user

5-8 Managing User Permissions

Types of SQL Server Users and Their Privileges SYBASE SQL Server Release 10.0

must have permission to execute a system procedure in all databases,
or in none of them.

Users not listed in sybsystemprocs..sysusers are treated as “guest” in
sybsystemprocs, and are automatically granted permission on many of
the system procedures. In order to deny a user permission on a
system procedure, the System Administrator must add him or her to
sybsystemprocs..sysusers and issue a revoke statement that applies to
that procedure. The owner of a user database cannot directly control
permissions on the system procedures within his or her own
database.

The setuser Command

A Database Owner can use the setuser command to “impersonate”
another user’s identity and permissions status in the current
database. A Database Owner may find it convenient to use setuser in
order to access an object owned by another user, to grant permissions
on an object owned by another user, to create an object that will be
owned by another user, or to temporarily take on the privileges of
another user for some other reason.

setuser permission defaults to the Database Owner and cannot be
transferred. The user being impersonated must be an authorized
user of the database.

System Administrators can use setuser in order to create objects that
will be owned by another user. However, since System
Administrators operate outside the permissions system, they cannot
use setuser to acquire another user’s permissions. No matter what
setuser commands have been issued, System Administrators always
retain permission to do everything.

The syntax of the setuser command is:

setuser [" user_name "]

The user being impersonated must be authorized to use the current
database. To re-establish your original identity, give the setuser
command with no name after it.

Here’s how the Database Owner would grant Joe permission to read
the authors table, which is owned by Mary:

setuser "mary"

grant select on authors to joe

setuser /*re-establishes original identity*/

System Administration Guide 5-9

SYBASE SQL Server Release 10.0 Types of SQL Server Users and Their Privileges

When the Database Owner uses the setuser command, SQL Server
checks the permissions of the user being impersonated.

The setuser command remains in effect until another setuser command
is given, or until the current database is changed with the use
command.

Changing Database Ownership

Use the system procedure sp_changedbowner to change the ownership
of a database. Often, System Administrators create the user
databases, then give ownership to another user after some of the
initial work is complete. Only the System Administrator can execute
sp_changedbowner.

It is a good idea to transfer ownership before the user has been added
to the database, and before the user has begun creating objects in the
database. The new owner must already have a login name on SQL
Server, but cannot be a user of the database, or have an alias in the
database. You may have to use sp_dropuser or sp_dropalias before you
can change a database’s ownership, and you may have to drop
objects before you can drop the user.

Issue sp_changedbowner in the database whose ownership will be
changed. The syntax is:

sp_changedbowner login_name [, true]

This example makes the user “albert” the owner of the current
database and drops aliases of users who could act as the old “dbo”:

sp_changedbowner albert

To transfer aliases and their permissions to the new “dbo,” add the
second parameter with the value “true” or “TRUE”.

➤ Note
You cannot change the ownership of the master database and should not

change the ownership of any other system databases.

Privileges of Database Object Owners

A user who creates a database object (a table, view, or stored
procedure) owns the objects, and is automatically granted all object
permissions on it. Users other than the object owner, including the
owner of the database, are automatically denied all permissions on

5-10 Managing User Permissions

Command and Object Permissions SYBASE SQL Server Release 10.0

that object, unless they are explicitly granted by either the owner or a
user who has grant permission on that object.

As an example, say that Mary is the owner of the pubs2 database, and
has granted Joe permission to create tables in it. Now Joe creates the
table new_authors; he is the owner of this database object.

Initially, object permissions on new_authors belong to Joe and Joe
alone. Joe can grant or revoke object permissions for this table to
other users, including Mary and the Database Owner. (However, the
Database Owner can use the setuser command as described earlier to
impersonate Joe.)

These are the command permissions that default to the owner of a
table, and that cannot be transferred to other users:

alter table
drop table
create index
create trigger
truncate table
update statistics

Permission to use the grant and revoke commands to grant specific
users permission to use the select, insert, update, delete, references, and
execute commands on specific database objects can be transferred,
using grant with grant option.

Permission to drop an object—a table, view, index, stored procedure,
rule, or default—defaults to its owner and cannot be transferred.

Privileges of Other Database Users

At the bottom of the hierarchy is the “public”—other database users.
Permissions are granted to or revoked from them by object owners,
Database Owners, users who were granted permissions with grant
option, and/or a System Administrator. These users are specified by
user name, by group name, or by the keyword public.

Command and Object Permissions

There are two categories of permissions. Permissions for the
commands select, update, insert, delete, references, and execute are called
object permissions because these commands always apply to
database objects (in the current database).

System Administration Guide 5-11

SYBASE SQL Server Release 10.0 Granting and Revoking Permissions

The objects to which the object permissions can apply are:

Object permissions default to System Administrators and the object
owner, and can be granted to other users.

Permissions for other commands are called command permissions
because they are not object specific. They can be granted only by a
System Administrator or a Database Owner. These commands are:

Each database has its own independent protection system: having
permission to use a certain command in one database has no effect in
other databases.

If you try to use a command or database object for which you have
not been assigned permission, SQL Server displays an error message.

Granting and Revoking Permissions

Command permissions and object permissions are given or removed
with the grant and revoke commands.

Command Objects
select table, view, columns
update table, view, columns
insert table, view
delete table, view
references table
execute stored procedure

Table 5-2: Object Permissions

Commands Restrictions
create database Can be granted only by a System Administrator, and only to

users in the master database
create default
create procedure
create rule
create table
create view

Table 5-3: Commands on Which Permissions May Be Granted

5-12 Managing User Permissions

Granting and Revoking Permissions SYBASE SQL Server Release 10.0

grant and revoke Syntax

The syntax for command permissions differs slightly from the syntax
for object permissions. Here are the syntax statements for command
permissions:

grant {all [privileges] | command_list }
to {public | name_list | role_name }

revoke {all [privileges] | command_list }
from {public | name_list | role_name }

The command list can include the following commands in any
combination: create database (can be granted only by a System
Administrator and in master), create default, create procedure, create rule,
create table, and create view. If you include more than one command,
separate them with commas.

Only a System Administrator or the Database Owner can use the
keyword all. When used by a System Administrator, grant all assigns
all create permissions. When the Database Owner uses grant all, SQL
Server grants all create permissions except create database, and prints
an informational message.

Here are the syntax statements for granting and revoking object
permissions (permission to use tables, views, columns, and stored
procedures):

grant {all [privileges] | permission_list }
on { table_name [(column_list)] |

view_name [(column_list)] |
stored_procedure_name }

to {public | name_list | role_name }
[with grant option]

revoke {all [privileges] | permission_list }
on { table_name [(column_list)] |

view_name [(column_list)] |
stored_procedure_name }

from {public | name_list | role_name }
 [cascade]

• If you are granting or revoking permissions on a table or view,
without specifying any columns, the privilege list can consist of
any combination of select, insert, delete, references, and update.

➤ Note
insert and delete permissions do not apply to columns, so you cannot include

them in a privilege list (or use the keyword all) if you specify a column list.

System Administration Guide 5-13

SYBASE SQL Server Release 10.0 Granting and Revoking Permissions

• When you grant or revoke permissions on columns, the privilege
list can include only select, references, and update. If you want a user
to be able to use a “select *” statement, you must grant her or him
select permission on the table, or on all the columns in a table.

You can specify columns either in the permission_list, or in the
column_list, but not both.

• When you grant permissions on stored procedures, the privilege
list must consist of execute or all, which is a synonym for execute.

• When you have set ansi_permissions on additional permissions are
required for update and delete statements. The following table
summarizes these requirements:

If you attempt to update or delete without having all the required
permissions an exception is generated and the transaction is
rolled back. In such a case you see the following message:

permission_type permission denied on object object_name database
database_name , owner owner_name

If this occurs, you need to be granted select permission on all
relevant columns by the column owner.

Permissions Required with
set ansi_permissions off

Permissions Required with
set ansi_permissions on

update • update permission on columns
where values are being set

• update permission on columns
where values are being set

And...

• select permission on all
columns appearing in where
clause

• select permission on all
columns right side of set
clause

delete • delete permission on columns
where values are being set

• delete permission on the table
from which rows are being
deleted

And...

• select permission on all
columns appearing in where
clause

Table 5-4: ANSI Permissions for update and delete

5-14 Managing User Permissions

Granting and Revoking Permissions SYBASE SQL Server Release 10.0

• The on clause in a grant or revoke statement specifies the object on
which the permission is being granted or revoked. You can grant
or revoke privileges for only one table, view, or stored procedure
object at a time. You can grant or revoke permissions for more
than one column at a time, but all the columns must be in the
same table or view.

• The keyword public refers to the group “public,” which includes
all the users of SQL Server. public means slightly different things
for grant and revoke:

- For grant, public includes you, the object owner. Therefore, if you
have revoked permissions from yourself on your object, and
later you grant permissions to public, you regain the permissions
along with the rest of “public.”

- For revoke on object permissions, public excludes the owner. For
revoke on command permissions, public excludes the Database
Owner (who “owns” command permissions).

• The name_list is a list of the names of:

- Groups

- Users

- A combination of users and groups, each name separated from
the next by a comma

• The role_name is the name of a SQL Server role. This allows you to
grant permissions to all users who have been granted a specific
role. The roles are sa_role (System Administrator), sso_role (System
Security Officer), and oper_role (Operator).

• The with grant option clause in a grant statement specifies that the
user(s) specified in name_list can grant the specified object
permission(s) to other users. This option can only be used for
individual users, not for groups or roles. If a user has with grant
option permission on an object, that permission is not revoked
when permissions on the object are revoked from public or a group
of which the user is a member.

• The cascade option in a revoke statement removes the specified
object permissions from the user(s) specified in name_list, and
also from any users they granted those permissions to.

You may only grant and revoke permissions on objects in the current
database.

Permissions granted to roles override permissions granted to users
or groups. For example, say John has been granted the System

System Administration Guide 5-15

SYBASE SQL Server Release 10.0 Granting and Revoking Permissions

Security Officer role, and sso_role has been granted permission on the
sales table. If John’s individual permission on sales is revoked, he is
still able to access sales because his role permissions override his
individual permissions.

Examples: Granting and Revoking Object Permissions

This statement gives Mary and the sales group permission to insert
into and delete from the titles table:

grant insert, delete
on titles
to mary, sales

This statement gives Harold permission to use the stored procedure
makelist:

grant execute
on makelist
to harold

This statement grants permission to execute the stored procedure
sa_only to users who have been granted the System Administrator
role:

grant execute
on sa_only_proc
to sa_role

This statement gives Aubrey permission to select, update, and delete
from the authors table, and to grant the same permissions to other
users:

grant select, update, delete
on authors
to aubrey
with grant option

Both the following statements revoke permission for all users except
the table owner to update the price and ytd_sales columns of the titles
table:

revoke update
on titles (price, ytd_sales)
from public

revoke update(price, ytd_sales)
on titles
from public

5-16 Managing User Permissions

Granting and Revoking Permissions SYBASE SQL Server Release 10.0

This statement revokes permission for Clare to update the authors
table, and simultaneously revokes that permission from all users she
granted that permission to:

revoke update
on authors
from clare
cascade

This statement revokes permission for users who have been granted
the Operator role to execute the stored procedure new_sproc:

revoke execute
on new_sproc
from oper_role

Examples: Granting and Revoking Command Permissions

Here are a few examples that show how to grant and revoke
command permissions:

grant create table, create view
to mary, jane, bob

grant create table, create rule
to public

revoke create table, create rule
from mary

Combining grant and revoke Statements

There are two basic styles of setting up permissions in a database or
on a database object. The most straightforward is to assign specific
permissions to specific users.

However, if most users are going to be granted most privileges, it’s
easier to assign all permissions to all users and then revoke specific
permissions from specific users.

For example, a Database Owner can grant all permissions on the titles
table to all users by issuing the following statement:

grant all
on titles
to public

Then the Database Owner can issue a series of revoke statements, for
example:

System Administration Guide 5-17

SYBASE SQL Server Release 10.0 Granting and Revoking Permissions

revoke update
on titles (royalty, advance)
from public

revoke delete
on titles
from mary, sales, john

Conflicting grant and revoke Statements

As implied in the previous section, grant and revoke statements are
sensitive to the order in which they are issued. So, for example, if
Joe’s group has been granted select permission on the titles table and
then Joe’s permission to select the advance column has been revoked,
Joe can select all the columns except advance, while the other users in
his group can still select all the columns.

A grant or revoke command that applies to a group changes any
conflicting permissions that have been assigned to any member of
that group. For example, suppose that the owner of the titles table has
granted different permissions to various members of the sales group,
and then decides to standardize. He or she might issue the following
statements:

revoke all on titles from sales
grant select on titles(title, title_id, type,

pub_id)
to sales

Similarly, a grant or revoke statement issued to public changes, for all
users, any previously issued permissions that conflict with the new
regime.

The same grant and revoke statements issued in different orders can
create entirely different situations. For example, the following set of
statements leaves Joe without any select permission on titles:

grant select on titles(title_id, title) to joe
revoke select on titles from public

In contrast, the same statements issued in the opposite order result in
only Joe having select permission, and only on the title_id and title
columns.

Remember that when you use the keyword public with grant, you are
including yourself. With revoke on command permissions, you are
included in public unless you are the Database Owner. With revoke on
object permissions, you are included in public unless you are the
object owner. You may wish to deny yourself permission to use your

5-18 Managing User Permissions

Reporting on Permissions SYBASE SQL Server Release 10.0

own table, while giving yourself permission to access a view built on
it. To do this you must issue grant and revoke statements explicitly
setting your permissions. (You can always change your mind and
reinstitute the permission with a grant statement.)

Reporting on Permissions

These system procedures provide information about command and
object permissions:

• sp_helprotect reports on permissions on database objects or users.

• sp_column_privileges reports on permissions on specific columns in
a table.

• sp_table_privileges reports on permissions on a specific table.

sp_helprotect

The system procedure sp_helprotect reports on permissions by
database object or by user, and (optionally) by user for a specified
object. Any user can execute this procedure. Its syntax is:

sp_helprotect name [, name_in_db [, "grant"]]

The first parameter, name, is either the name of the table, view, or
stored procedure; or the name of a user, group, or role in the current
database. If you specify the second parameter, name_in_db, only that
user’s permissions on the specified object are reported. If name is not
an object, sp_helprotect checks whether name is a user, group, or role. If
so, the permissions for the user, group, or role are listed. If you
specify the third parameter, the keyword grant, and name is not an
object, sp_helprotect displays all permissions granted by with grant option.

For example, suppose you issue the following series of grant and
revoke statements:

grant select on titles to judy
grant update on titles to judy
revoke update on titles(contract) from judy
grant select on publishers to judy

with grant option

To determine the permissions Judy now has on each column in the
titles table, type:

sp_helprotect titles, judy

The following display results:

System Administration Guide 5-19

SYBASE SQL Server Release 10.0 Reporting on Permissions

grantor grantee type action object column grantable
------- ------ ----- ------ ------ ------ -------
dbo judy Grant Select titles All FALSE
dbo judy Grant Update titles advance FALSE
dbo judy Grant Update titles notes FALSE
dbo judy Grant Update titles pub_id FALSE
dbo judy Grant Update titles pubdate FALSE
dbo judy Grant Update titles title FALSE
dbo judy Grant Update titles title_id FALSE
dbo judy Grant Update titles total_sales FALSE
dbo judy Grant Update titles type FALSE

The first row of the display shows that the Database Owner (“dbo”)
gave Judy permission to select all columns of the titles table. The rest
of the lines indicate that she can update only the columns listed in the
display. Judy’s permissions are not grantable: she cannot give select
or update permissions to any other user.

To see the Judy’s permissions on the publishers table, type:

sp_helprotect publishers, judy

In the display below, the grantable column indicates TRUE, meaning
that Judy can grant the permission to other users.

grantor grantee type action object column grantable
------- ------ ----- ------ ------ ------ -------
dbo judy Grant Select publishers all TRUE

sp_column_privileges

sp_column_privileges is a catalog stored procedure that returns
information about permissions on columns in a table. The syntax is:

sp_column_privileges table_name [, table_owner
[, table_qualifier [, column_name]]]

table_name is the name of the table. This is required.

table_owner can be used to specify the name of the table owner, if it is
not “dbo” or the user executing sp_column_privileges.

table_qualifier is the name of the current database.

column_name is the name of the column on which you want to see
permissions information.

Use null for parameters that you do not wish to specify.

For example, this statement:

sp_column_privileges publishers, null, null, pub_id

5-20 Managing User Permissions

Permissions on Views and Stored Procedures SYBASE SQL Server Release 10.0

returns information about the pub_id column of the publishers table.
See Volume 2, Chapter 2 of the SQL Server Reference Manual for more
specific information about the output of sp_column_privileges.

sp_table_privileges

sp_table_privileges is a catalog stored procedure that returns
permissions information about a specified table. The syntax is:

sp_table_privileges table_name [, table_owner
[, table_qualifier]]

table_name is the name of the table. It is required.

table_owner can be used to specify the name of the table owner, if it is
not “dbo” or the user executing sp_column_privileges.

table_qualifier is the name of the current database.

You can use null for parameters that you do not wish to specify.

For example, this statement:

sp_table_privileges titles

returns information about all permissions granted on the titles table.
See Volume 2, Chapter 2 of the SQL Server Reference Manual for more
specific information about the output of sp_table_privileges.

Permissions on Views and Stored Procedures

Views and stored procedures can serve as security mechanisms. A
user can be granted permission on a view or on a stored procedure
even if he or she has no permissions on objects the view or procedure
references.

Views as Security Mechanisms

Through a view, users can query and modify only the data they can
see. The rest of the database is neither visible nor accessible.

Permission to access the subset of data in a view must be explicitly
granted or revoked, regardless of the set of permissions in force on
the view’s underlying tables. Data in an underlying table that is not
included in the view is hidden from users who are authorized to
access the view but not the underlying table.

System Administration Guide 5-21

SYBASE SQL Server Release 10.0 Permissions on Views and Stored Procedures

By defining different views and selectively granting permissions on
them, a user (or any combination of users) can be restricted to
different subsets of data. The following examples illustrate the use of
views for security purposes:

• Access can be restricted to a subset of the rows of a base table (a
value-dependent subset). For example, you might define a view
that contains only the rows for business and psychology books, in
order to keep information about other types of books hidden
from some users.

• Access can be restricted to a subset of the columns of a base table
(a value-independent subset). For example, you might define a
view that contains all the rows of the titles table, but omits the
royalty and advance columns, since this information is sensitive.

• Access can be restricted to a row-and-column subset of a base
table.

• Access can be restricted to the rows that qualify for a join of more
than one base table. For example, you might define a view that
joins the titles, authors, and titleauthor tables in order to display the
names of the authors and the books they have written. This view
would hide personal data about authors and financial
information about the books.

• Access can be restricted to a statistical summary of data in a base
table. For example, you might define a view that contains only
the average price of each type of book.

• Access can be restricted to a subset of another view, or of some
combination of views and base tables.

As an example, you want to prevent some users from accessing the
columns in the titles table that have to do with money and sales. You
could create a view of the titles table that omits those columns, and
then give all users permission on the view but only the Sales
Department permission on the table. Here’s how:

grant all on bookview to public

grant all on titles to sales

An equivalent way of setting up these privilege conditions, without
using a view, is this series of statements:

grant all on titles to public

revoke select, update on titles (price, advance,
royalty, ytd_sales)

from public

5-22 Managing User Permissions

Permissions on Views and Stored Procedures SYBASE SQL Server Release 10.0

grant select, update on titles (price, advance,
royalty, ytd_sales)

to sales

One possible problem with the second scheme is that users not in the
sales group who enter the command:

select * from titles

might be surprised to see the message that includes the phrase:

Permission denied

SQL Server expands the asterisk into a list of all the columns in the
titles table, and since permission on some of these columns has been
revoked from non-sales users, refuses access to them. The error
message lists the columns for which the user does not have access.

In order to see all the columns for which they do have permission,
the non-sales users would have to name them explicitly. For this
reason, creating a view and granting the appropriate permissions on
it is a better solution.

In addition to protecting data based on a selection of rows and/or
columns, views can be used for context-sensitive protection. For
example, you can create a view that gives a data entry clerk
permission to access only those rows that he or she has added or
updated.

In order to do so, you would add a column to a table in which the
user ID of the user entering each row is automatically recorded with
a default. You can define this default in the create table statement, like
this:

create table testtable
(empid int,
startdate datetime,
username varchar(30) default user)

Next, define a view that includes all the rows of the table where uid is
the current user:

create view context_view
as

select *
from testtable
where username = user_name()

with check option

The rows retrievable through this view depend on the identity of the
person who issues the select command against the view. By adding
the with check option to the view definition, you make it impossible for

System Administration Guide 5-23

SYBASE SQL Server Release 10.0 Permissions on Views and Stored Procedures

any data entry clerk to falsify the information in the username
column.

Stored Procedures as Security Mechanisms

A user with permission to execute a stored procedure can do so even
if he or she does not have permissions on tables or views referenced
in it. For example, a user might be given permission to execute a
stored procedure that updates a row-and-column subset of a
specified table, even though that user does not have any other
permissions on that table.

Permissions on views and stored procedures are checked when the
object is used, not when it is created.

Roles and Stored Procedures

You can use the grant execute command to grant execute permission on
a stored procedure to all users who have been granted a specified
role. Similarly, revoke execute removes this permission.

For further security, you can restrict the use of a stored procedure
with any SQL commands you can program into it. For example, you
can use the proc_role system function within a stored procedure to
guarantee that a procedure can only be executed by users with a
given role. proc_role returns 1 if the user has a specific role (sa_role,
sso_role, or oper_role) and returns 0 if the user does not have that role.
For example, here is a procedure that uses proc_role to see if the user
has the System Administrator role:

create proc test_proc
as
if (proc_role("sa_role") = 0)
begin

print "You don’t have the right role"
return -1

end
else

print "You have SA role"
return 0

See “System Functions” in Volume 1 of the SQL Server Reference
Manual for more information about proc_role.

5-24 Managing User Permissions

Permissions on Views and Stored Procedures SYBASE SQL Server Release 10.0

Ownership Chains

Views can depend on other views and/or tables. Procedures can
depend on other procedures, views, and/or tables. These
dependencies can be thought of as an ownership chain.

Ownership Chains and Views

Typically, the owner of a view also owns its underlying objects (other
views and tables), and the owner of a stored procedure owns all the
procedures, tables, and views the procedure references.

Also, a view and its underlying objects are usually all in the same
database, as are a stored procedure and all the objects it references.
However, it is not required that all of the underlying objects be in the
same database. If these objects are in different databases, a user
wishing to use the view or stored procedure must be a valid or guest
user in all of the databases containing the objects. (This prevents
users from accessing a database unless the Database Owner has
authorized it.)

When a user with permission to access a view does so, SQL Server
does not check permissions on any of the view’s underlying objects
if:

• These objects and the view are all owned by the same user, and

• The user accessing the view is a valid user or guest in each of the
databases containing the underlying objects.

Similarly, if the same user owns a stored procedure and all the views
or tables it references, SQL Server checks only the permissions on the
procedure.

However, if the ownership chain of a procedure or view is broken—
that is, if not all the objects in the chain are owned by the same user—
SQL Server checks permissions on each object in the chain whose
next lower link is owned by a different user. In this way, SQL Server
allows the owner of the original data to retain control over who is
authorized to access it.

Ordinarily, a user who creates a view need worry only about
granting permissions on that view. For example, say Mary has
created a view called auview1 on the authors table, which she also
owns. If Mary grants select permission to Sue on auview1, SQL Server
will let Sue access it without checking permissions on authors.

However, a user who creates a view or stored procedure that
depends on an object owned by another user must be aware that any

System Administration Guide 5-25

SYBASE SQL Server Release 10.0 Permissions on Views and Stored Procedures

permissions he or she grants depend on the permissions allowed by
those other owners.

Say Joe creates a view called auview2, which depends on Mary’s view
auview1. Joe grants Sue select permission on auview2.

Figure 5-1: Ownership Chains and Permission Checking for Views, Case 1

SQL Server checks the permissions on auview2 and auview1, and
finds that Sue can use them. SQL Server checks ownership on
auview1 and authors and finds they have the same owner. Sue can
therefore use auview2.

SQL Server performs no authorization checks at the time a view is
created. In fact, if Joe has permission on the create view command, he
can define a view based on the authors table even if he does not have
select permission on authors. However, the view would be useless to
everyone, including Joe. Anyone who tried to use the view would
receive an error message.

Let’s take our example a step further. Suppose that Joe’s view,
auview2, depends on auview1, which depends on authors. Mary
decides she likes Joe’s auview2 and creates auview3 on top of it. Both
auview1 and authors are owned by Mary.

auview2

auview1

authors

Joe

Mary

Mary

Sue’s permission

select

select

none

Objects Ownership Checks

Sue not owner

Check permissions

Different owner

Check permissions

Same owner

No permission check

5-26 Managing User Permissions

Permissions on Views and Stored Procedures SYBASE SQL Server Release 10.0

The ownership chain looks like this:

Figure 5-2: Ownership Chains and Permission Checking for Views, Case 2

When Sue tries to access auview3, SQL Server checks permissions on
auview3, auview2, and auview1. If Joe has granted permission to Sue
on auview2 and Mary has granted her permission on auview3 and
auview1, SQL Server allows the access. SQL Server checks
permissions only if the object immediately before it in the chain has
a different owner (or if it is the first object in the chain). For example,
it checks auview2 because the object before it—auview3—is owned by
a different user. It does not check permission on authors, because the
object which immediately depends on it, auview1, is owned by the
same user.

auview2

auview1

authors

Joe

Mary

Mary

Sue’s permission

select

select

none

Objects Ownership Checks

Different owner

Check permissions

Different owner

Check permissions

Same owner

No permission check

auview3 Maryselect Sue not owner

Check permissions

System Administration Guide 5-27

SYBASE SQL Server Release 10.0 Permissions on Views and Stored Procedures

Procedures follow the same rules. As an example, suppose the
situation is this:

Figure 5-3: Ownership Chains and Permission Checking for Stored Procedures

To execute proc4, Sue must have permission to execute proc4, proc2,
and proc1. Permission to execute proc3 is not necessary, since proc3
and proc4 have the same owner.

Ownership Chains and Stored Procedures

SQL Server checks Sue’s permissions on proc4 and all objects it
references each time she executes proc4. SQL Server knows which
referenced objects to check: it determined this the first time Sue
executed proc4, and it saved the information with the procedure’s
execution plan. Unless one of the objects referenced by the procedure
is dropped or otherwise redefined, SQL Server does not change its
initial decision about which objects to check.

The purpose of this protection hierarchy is to allow every object’s
owner to fully control access to the object. Owners can control access
to views and stored procedures, as well as to tables.

proc3

proc2

authors

Mary

Joe

Mary

Sue’s permission

none

execute

none

Objects Ownership Checks

Same owner

No permission check

Different owner

Check permissions

Same owner

No permission check

proc4 Maryexecute Sue not owner

Check permissions

proc1 Maryexecute
Different owner

Check permissions

5-28 Managing User Permissions

Permissions on Views and Stored Procedures SYBASE SQL Server Release 10.0

Triggers

Triggers are a special kind of stored procedure used to enforce
integrity, especially referential integrity. (Please see the Transact-SQL
User’s Guide or the SQL Server Reference Manual for details.) Triggers
are never executed directly, but only as a side effect of modifying a
table. There is no way to grant or revoke permissions for triggers.

Only the owner of an object can create a trigger on it. However, the
ownership chain can be broken if a trigger on a table references
objects owned by different users. The protection hierarchy rules that
apply to procedures also hold for triggers.

While the objects which a trigger affects are usually owned by the
same user who owns the trigger, you can write a trigger that modifies
an object owned by another user. If this is the case, any users
modifying your object in a way that activates the trigger must have
permission on the other object as well.

If SQL Server denies permission on a data modification command
because of a trigger that affects an object for which the user does not
have permission, the entire data modification command is aborted.

System Administration Guide 6-1

6. Checking Database Consistency

Introduction

The Database Consistency Checker (dbcc) is a set of utility commands
for checking the logical and physical consistency of a database. Use
the dbcc commands:

• As part of regular database maintenance (periodic checks run by
the System Administrator). These checks can detect, and often
correct, errors before they affect a user’s ability to use SQL Server.

• To determine the extent of possible damage after a system error
has occurred.

• Before backing up a database.

• Because you suspect that a database is damaged. For example, if
using a particular table generates the message “Table corrupt”,
you can use dbcc to determine if other tables in the database are
also damaged.

The integrity of the internal structures of a database depends upon
the System Administrator or Database Owner running database
consistency checks on a regular basis. Two major functions of dbcc
are:

• Checking allocation structures (the commands checkalloc, tablealloc,
and indexalloc).

• Checking page linkage and data pointers at both the page level
and row level (checktable and checkdb). The next section explains
page and object allocation and page linkage.

This chapter discusses:

• Page and object allocation. Understanding how SQL Server
handles page and object allocation makes it easier to understand
what the dbcc commands do.

• The dbcc commands: their syntax and what they do.

• When and how to use the dbcc commands.

All dbcc commands except the dbrepair command and checkdb with the
fix option can be run while the database is active.

6

6-2 Checking Database Consistency

Page and Object Allocation Concepts SYBASE SQL Server Release 10.0

Errors Generated by Database Consistency Problems

Errors generated by database consistency problems usually have
error numbers from 2500 through 2599 or 7900 through 7999. These
messages and others that can result from database consistency
problems (such as message 605) can be very scary, including phrases
like “Table Corrupt” or “Extent not within segment”. Many of these
messages indicate severe database consistency problems, while other
problems are not urgent. Some will require help from Technical
Support, but many can be solved by:

• Running dbcc commands which have the fix option.

• Following instructions in the SYBASE Troubleshooting Guide. This
guide contains step-by-step instructions for resolving many dbcc
errors.

Whatever the techniques required to solve the problems, the
solutions are much easier when you find the problem early, soon
after the corruption or inconsistency originated. Consistency
problems can exist on data pages that are not used frequently, such as
a table that is only updated monthly. dbcc can find—and often fix—
these problems for you before a user needs the data. The only way to
find these problems early is to run dbcc commands often.

If you dump a database that contains consistency errors, and load
that dump of the database at a later time, the result will be a database
that has consistency problems, since a database dump is a logical
image of the data pages.

dbcc Permissions

The Database Owner and System Administrator are automatically
granted permission to use all of the dbcc commands. Permission for
dbcc checktable, dbcc reindex, and dbcc fix_text defaults to the table owner.
Permission to run dbcc is not transferable.

Page and Object Allocation Concepts

When you initialize a database device, the disk init command divides
the new space into allocation units of 256 2K data pages (data pages
on Stratus machines are 4K each). The first page of each allocation
unit is an allocation page, which tracks the use of all pages in the
allocation unit. Allocation pages have an object ID of 99; they aren’t

System Administration Guide 6-3

SYBASE SQL Server Release 10.0 Page and Object Allocation Concepts

real database objects, and don’t appear in system tables, but dbcc
errors on allocation pages report this value.

Whenever a table or index requires space, SQL Server allocates a
block of 8 2K pages (8 4K pages on Stratus) to the object. This 8-page
block is called an extent. Each 256-page allocation unit contains 32
extents. SQL Server use extents as a unit of space management to
allocate and de-allocate space:

• When you create a table or index SQL Server allocates an extent
for the object.

• When you add rows to an existing table, SQL Server allocates
another page if existing pages are full. If all of the pages in an
extent are full, SQL Server allocates an additional extent.

• When you drop a table or index, SQL Server deallocates the
extents it occupied.

• When you delete rows from a table, so that it shrinks off a page,
SQL Server deallocates the page; if the table shrinks off the extent,
SQL Server deallocates the extent.

Every time space is allocated or deallocated on an extent, SQL Server
records the event on the allocation page that tracks the extents for
that object. This provides a fast method for tracking space allocations
in the database, since objects can shrink or grow without a lot of
overhead.

6-4 Checking Database Consistency

Page and Object Allocation Concepts SYBASE SQL Server Release 10.0

Table 6-1 shows how data pages are set up within extents and
allocation units in SQL Server databases.

Figure 6-1: Page Management with Extents

dbcc provides the checkalloc command for checking all allocation
pages in the database, and the indexalloc and tablealloc commands for
checking allocation for specific database objects.

dbcc checkalloc checks all allocation pages (page 0 and all pages
divisible by 256) in a database, and reports on the allocation
information it finds there.

50 1 2 3 4 6 7

8 9 10 11 12 13 14 15

16 17 18 19 20 21 22 23

24 25 26 27 28 29 30 31

256 257 258 259 260 261 262 263

264 265 266 267 268 269 270 271

272 273 274 275 276 277 278 279

280 281 282 283 284 285 286 287

extent 0

allocation unit
256 pages

.

.

.

extent 280

allocation
page

other pages

extent
(8 pages)

.

.

248 249 250 251 252 253 254 255

504 505 506 507 508 509 510 511

5

.

System Administration Guide 6-5

SYBASE SQL Server Release 10.0 Page and Object Allocation Concepts

The Object Allocation Map (OAM)

Each table, and each index on a table, has an Object Allocation Map
(OAM). The OAM is stored on pages allocated to the table or index
and is checked when a new page is needed for the index or table. A
single OAM page can hold allocation mapping for between 2016 and
64,260 data or index pages.

The OAM pages point to the allocation page for each allocation unit
where the object uses space. The allocation pages, in turn, track the
information about extent and page usage within the allocation unit.
In other words, if the titles table is stored on extents 24 and 272, the
OAM page for the titles table points to pages 0 and 256.

Figure 6-2: OAM Page and Allocation Page Pointers shows an object
stored on 4 extents, numbered 0, 24, 272 and 504. The Object
Allocation Map is stored on the first page of the first segment. In this
case, since the allocation page occupies page 0, the OAM is located
on page 1.

This OAM points to two allocation pages: page 0 and page 256.

These allocation pages track the pages used in each extent used by all
objects with storage space in the allocation unit. For the object in this
example, it tracks the allocation and deallocation of pages on extents
0, 24, 272, and 504.

6-6 Checking Database Consistency

Page and Object Allocation Concepts SYBASE SQL Server Release 10.0

Figure 6-2: OAM Page and Allocation Page Pointers

The dbcc checkalloc and dbcc tablealloc commands examine this OAM
page information, in addition to checking page linkage, described in
the following section.

283

511

279

2824 25 26 27 29 30 31

.

.

274

7

256

50 1 2 3 4 6

8 9 10 11 12 13 14 15

16 17 18 19 20 21 22 23

257 258 259 260 261 262 263

264 265 266 267 268 269 270 271

272 273 275 276 277 278

280 281 282 284 285 286 287

.

248 249 250 251 252 253 254 255

504 505 506 507 508 509 510

OAM page

Pages used
by object

other pages

allocation
page

OAM page pointers
to allocation pages

allocation page
tracks page usage
on these extents

.

.

.

System Administration Guide 6-7

SYBASE SQL Server Release 10.0 Individual dbcc Commands

Page Linkage

Once a page has been allocated to a table or index, that page is linked
with other pages used for the same object. Figure 6-3: How a Newly-
Allocated Page is Linked with Other Pages illustrates this linking. Each
page contains a header that includes the number of the page that
precedes it (prev) and of the page that follows it (next). When a new
page is allocated, the header information on the surrounding pages
changes to point to that page. dbcc checktable and dbcc checkdb check
page linkage. dbcc checkalloc, tablealloc, and indexalloc compare page
linkage to information on the allocation page.

Figure 6-3: How a Newly-Allocated Page is Linked with Other Pages

Individual dbcc Commands

dbcc checktable

The syntax for dbcc checktable is:

dbcc checktable ({ table_name | table_id }
[, skip_ncindex])

The dbcc checktable command checks the specified table to see that:

• Index and data pages are correctly linked

• Indexes are in properly sorted order

• All pointers are consistent

prev next

prev next

prev nextexisting pages

new page to be linked

old link
new link

6-8 Checking Database Consistency

Individual dbcc Commands SYBASE SQL Server Release 10.0

• The data rows on each page all have entries in the first OAM page
matching their respective locations on the page

The option skip_ncindex allows you to skip checking the page linkage,
pointers and sort order on nonclustered indexes. The linkage and
pointers of clustered indexes and data pages is essential to the
integrity of your tables. You can easily drop and recreate
nonclustered indexes if SQL Server reports problems with page
linkage or pointers.

dbcc checktable can be used with the table name or the table’s object ID.
The sysobjects table stores this information in the name and id
columns.

Here’s an example of a report on an undamaged table:

1> dbcc checktable(titles)
2> go

Checking titles
The total number of data pages in this table is 2.
Table has 18 data rows.

DBCC execution completed. If DBCC printed error
messages, see your System Administrator.

To check a table not in the current database, supply the database
name. To check a table owned by another object, supply the owner’s
name. You must enclose any qualified table name in quotes:

dbcc checktable("pubs2.newuser.testtable")

These are the problems that dbcc checktable addresses:

• If the page linkage is incorrect, dbcc checktable displays an error
message.

• If the sort order (sysindexes.soid) or character set (sysindexes.csid)
for a table with columns with char or varchar datatypes is
incorrect, and the table’s sort order is compatible with SQL
Server’s default sort order, dbcc checktable corrects the values for
the table. Only the binary sort order is compatible across
character sets.

➤ Note
If you change sort orders, character-based user indexes are marked read-only

and must be checked and rebuilt if necessary. See Chapter 17, ‘‘Language,

Sort Order, and Character Set Issues’’, for more information about changing

sort orders.

System Administration Guide 6-9

SYBASE SQL Server Release 10.0 Individual dbcc Commands

• If there are data rows not accounted for in the first OAM page for
the object, dbcc checktable updates the number of rows on that
page. This is never a serious problem, it is just a little quick
housekeeping. The built-in function rowcnt uses this value to
provide fast row estimates in procedures like sp_spaceused.

dbcc checkdb

The syntax for dbcc checkdb is:

dbcc checkdb [(database_name [, skip_ncindex])]

The dbcc checkdb command runs the same checks as dbcc checktable on
each table in the specified database. If you do not give a database
name, dbcc checkdb checks the current database. dbcc checkdb gives
similar messages to those returned by dbcc checktable and makes the
same types of corrections.

If you specify the optional skip_ncindex mode, dbcc checkdb does not
check any of the nonclustered indexes on user tables in the database.

dbcc checkcatalog

The syntax for dbcc checkcatalog is:

dbcc checkcatalog [(database_name)]

The dbcc checkcatalog command checks for consistency within and
between the system tables found in a particular database. If no
database name is given, dbcc checkcatalog checks the current database.

For example, it verifies that:

• Every type in syscolumns has a matching entry in systypes

• Every table and view in sysobjects has at least one column in
syscolumns

• The last checkpoint in syslogs is valid

It also lists the segments defined for use by the database.

Here’s an example of output from dbcc checkcatalog:

dbcc checkcatalog (testdb)

6-10 Checking Database Consistency

Individual dbcc Commands SYBASE SQL Server Release 10.0

Checking testdb
The following segments have been defined for database 5
(database name testdb).
virtual start addr size segments
-------------------- ------ --------------------------
33554432 4096
 0
 1
16777216 1024
 2
DBCC execution completed. If DBCC printed error messages, see
your System Administrator.

dbcc checkalloc

The syntax for dbcc checkalloc is:

dbcc checkalloc [(database_name [, fix | nofix])]

The dbcc checkalloc command checks the specified database to see that:

• All pages are correctly allocated

• No page is allocated that is not used

• No page is used that is not allocated

If you do not give a database name, dbcc checkalloc checks the current
database.

The default mode for dbcc checkalloc is nofix. To use dbcc checkalloc with
the fix option, you must first put the database into single-user mode
with the command:

sp_dboption dbname, "single user", true

You can only issue this command when no one is using the database.

dbcc checkalloc reports the amount of space allocated and used. dbcc
checkalloc output consists of a block of data for each table, including
the system tables and the indexes on each table. For each table or
index, it reports the number of pages and extents used. Table
information is reported as either INDID =0 or INDID=1. Tables without
clustered indexes have indid = 0 (for example, salesdetail, below).
Tables with clustered indexes have indid = 1, and the report for these
includes information on the data level and the index level. See the
report for titleauthor and titles, below. Nonclustered indexes are
numbered consecutively, starting from INDID=2.

Here is a portion of a report on pubs2, showing the output for three
tables:

System Administration Guide 6-11

SYBASE SQL Server Release 10.0 Individual dbcc Commands

TABLE: salesdetail OBJID = 144003544
INDID=0 FIRST=297 ROOT=299 SORT=0
 Data level: 0. 3 Data Pages in 1 extents.
INDID=2 FIRST=289 ROOT=290 SORT=1
 Indid : 2. 3 Index Pages in 1 extents.
INDID=3 FIRST=465 ROOT=466 SORT=1
 Indid : 3. 3 Index Pages in 1 extents.
TOTAL # of extents = 3

TABLE: titleauthor OBJID = 176003658
INDID=1 FIRST=433 ROOT=425 SORT=1
 Data level: 1. 1 Data Pages in 1 extents.
 Indid : 1. 1 Index Pages in 1 extents.
INDID=2 FIRST=305 ROOT=305 SORT=1
 Indid : 2. 1 Index Pages in 1 extents.
INDID=3 FIRST=441 ROOT=441 SORT=1
 Indid : 3. 1 Index Pages in 1 extents.
TOTAL # of extents = 4

TABLE: titles OBJID = 208003772
INDID=1 FIRST=417 ROOT=409 SORT=1
 Data level: 1. 3 Data Pages in 1 extents.
 Indid : 1. 1 Index Pages in 1 extents.
INDID=2 FIRST=313 ROOT=313 SORT=1
 Indid : 2. 1 Index Pages in 1 extents.
TOTAL # of extents = 3

In its default (nofix) mode, dbcc checkalloc does not correct allocation
errors. In fix mode, it can fix all of the allocation errors fixed by dbcc
tablealloc, and can also fix pages which remain allocated to objects that
have been dropped from the database.

Since the database must be in single-user mode to use the fix option,
you can run dbcc checkalloc in nofix mode, and use dbcc tablealloc or dbcc
indexalloc, described below, with the fix option to correct errors found
in individual tables or indexes.

dbcc tablealloc

The syntax for dbcc tablealloc is:

dbcc tablealloc ({ table_name | table_id }
[, {full | optimized | fast | null}
[, fix | nofix]])

6-12 Checking Database Consistency

Individual dbcc Commands SYBASE SQL Server Release 10.0

➤ Note
You can specify fix or nofix only if you include a value for the type of report (full,
optimized, fast, or null).

This command performs the same checks as dbcc checkalloc on a single
table. You can specify either the table name or the table’s object ID
(the id column from sysobjects).

There are three types of reports that can be generated with dbcc
tablealloc: full, optimized, and fast.

• The full option is equivalent to dbcc checkalloc at a table level; it
reports all types of allocation errors.

• The optimized option produces a report based on the allocation
pages listed in the object allocation map (OAM) pages for the
table. It does not report and cannot fix unreferenced extents on
allocation pages not listed in the OAM pages. If the type of report
is not indicated in the command, or if you indicate null, optimized is
the default.

• The fast option produces an exception report of pages that are
referenced but not allocated in the extent (2521 errors). It does not
produce an allocation report.

Table 6-1: dbcc Commands Compared for Speed, Thoroughness, and
Locking on page 6-15 compares these options and other dbcc
commands for speed, completeness, locking, and performance
issues.

Correcting Allocation Errors—the fix | nofix option

The fix | nofix option determines whether or not tablealloc fixes the
allocation errors found in the table. The default is fix for all user
tables; the default for all system tables is nofix. To use the fix option
with system tables, you must first put the database into single user
mode.

➤ Note
The number of errors corrected when you run dbcc tablealloc and dbcc indexalloc
with the fix option depends on the type of report (full, optimized, or fast) you

request. Running dbcc tablealloc with the full option fixes more errors than

running the command with the optimized or fast option.

System Administration Guide 6-13

SYBASE SQL Server Release 10.0 Individual dbcc Commands

Output from a dbcc tablealloc command with the fix option displays
any allocation errors found, as well as any corrections made. Here is
an example of an error message that appears whether or not the fix
option is used:

Msg 7939, Level 22, State 1:
Line 2:
Table Corrupt: The entry is missing from the OAM
for object id 144003544 indid 0 for allocation
page 2560.

The following message, which appears when the fix option is used,
indicates that the missing entry has been restored:

The missing OAM entry has been inserted.

dbcc indexalloc

This is the syntax for dbcc indexalloc:

dbcc indexalloc ({ table_name | table_id }, index_id
[, {full | optimized | fast | null}
[, fix | nofix]])

➤ Note
You can specify fix or nofix only if you include a value for the type of report (full,
optimized, fast, or null).

The dbcc indexalloc command checks the specified index to see that:

• All pages are correctly allocated

• No page is allocated that is not used

• No page is used that is not allocated

This is an index-level version of dbcc checkalloc, providing the same
integrity checks on an individual index. You can specify either the
table name or the table’s object ID (the id column from sysobjects) and
the index’s indid from sysindexes. dbcc checkalloc and dbcc indexalloc
include the index ID’s in their output.

dbcc indexalloc produces the same three types of reports as dbcc
tablealloc: full, optimized, and fast (see preceding paragraphs on tablealloc).
The fix|nofix option works the same in dbcc indexalloc as in dbcc tablealloc.

6-14 Checking Database Consistency

Individual dbcc Commands SYBASE SQL Server Release 10.0

dbcc dbrepair

This is the syntax for dbcc dbrepair:

dbcc dbrepair (database_name , dropdb)

The dbcc dbrepair dropdb command drops a damaged database. The
Transact-SQL command drop database does not work on a database
that cannot be recovered or used. Issue the dbrepair statement from the
master database; no users, including the dbrepair user, can be using the
database when it is dropped.

dbcc reindex

The System Administrator or table owner should run dbcc reindex
after changing SQL Server’s sort order. This is the syntax for dbcc
reindex:

dbcc reindex ({ table_name | table_id })

The dbcc reindex command checks the integrity of indexes on user
tables by running a “fast” version of dbcc checktable. It drops and
rebuilds indexes it suspects are corrupted (that is, the order in which
the indexes sort data is not consistent with the new sort order). For
more information, see Chapter 17, ‘‘Language, Sort Order, and
Character Set Issues’’.

dbcc fix_text

The dbcc fix_text command upgrades text values after a SQL Server’s
character set has been changed to a multibyte character set. This is
the syntax for dbcc fix_text:

dbcc fix_text ({ table_name | table_id })

Changing to a multibyte character set makes the management of text
data more complicated. Since a text value can be large enough to
cover several pages, SQL Server must be able to handle characters
that may span page boundaries. To do so, SQL Server requires
additional information on each of the text pages. The System
Administrator or table owner must run dbcc fix_text on each table that
has text data to calculate the new values needed. See Chapter 17,
‘‘Language, Sort Order, and Character Set Issues’’, for more
information.

System Administration Guide 6-15

SYBASE SQL Server Release 10.0 How, When, and Why to Use the dbcc Commands

How, When, and Why to Use the dbcc Commands

The following sections compare the dbcc commands, provide
suggestions for scheduling and strategies to avoid serious
performance impacts, and provide additional information about dbcc
output.

Comparing the dbcc Commands

Run the following dbcc commands whenever you schedule database
maintenance:

• dbcc checkdb or dbcc checktable

• dbcc checkalloc or dbcc indexalloc and dbcc tablealloc

• dbcc checkcatalog

In general, the more thoroughly the dbcc command checks the
integrity of an object or database, the slower it is. Table 6-1 compares
the speed, thoroughness, level of checking, and locking and other
performance implications of these commands. Bear in mind that dbcc
checktable (and dbcc checkdb) and dbcc checkcatalog perform different
types of integrity checks than dbcc checkalloc, dbcc tablealloc, and dbcc
indexalloc.

Command and
Option Level Locking and Performance Speed Thoroughness

checktable
checkdb

page chains, sort
order, data rows for
all indexes

shared table lock; dbcc
checkdb locks one table at
a time and releases lock
after it finishes checking
that table

slow high

checktable
checkdb

with skip_ncindex

page chains, sort
order, data rows for
tables and clustered
indexes

same as above up to 40%
faster than
without
the
skip_ncindex
option

medium

checkalloc page chains no locking; performs a lot
of I/O and may saturate
the I/O calls; only
allocation pages are
cached

slow high

Table 6-1: dbcc Commands Compared for Speed, Thoroughness, and Locking

6-16 Checking Database Consistency

How, When, and Why to Use the dbcc Commands SYBASE SQL Server Release 10.0

Scheduling Database Maintenance at Your Site

Several factors determine how often you should run dbcc commands
in databases at your site and which ones you need to run:

• When are your databases heavily used? Is your installation used
heavily primarily between the hours of 8 a.m. and 5 p.m., or is it
used heavily 24 hours a day?

If your SQL Server is used primarily between the hours of 8 a.m.
and 5 p.m., Monday through Friday, you can run dbcc checks at
night and on weekends so the checks do not have a significant
impact on your users. If your tables are not extremely large, you
can run a complete set of dbcc commands fairly frequently.

If your SQL Server is heavily used 24 hours a day, 7 days a week,
you may want to schedule a cycle of checks on individual tables
and indexes using dbcc checktable, dbcc tablealloc, and dbcc indexalloc.
At the end of the cycle, when all tables have been checked, you
can run dbcc checkcatalog and back up the database.

Some sites with 24-hour, high-performance demands choose to
run dbcc checks by:

- Dumping the database to tape

- Loading their database dumps into a separate SQL Server

tablealloc full
indexalloc full

page chains shared table lock;
performs a lot of I/O;
only allocation pages are
cached

slow high

tablealloc optimized
indexalloc optimized

allocation pages shared table lock;
perform a lot of I/O; only
allocation pages are
cached

moderate medium

tablealloc fast
indexalloc fast

OAM pages shared table lock fastest low

checkcatalog rows in system
tables

shared page locks on
system catalogs; releases
lock after each page is
checked; very few pages
cached

Command and
Option Level Locking and Performance Speed Thoroughness

Table 6-1: dbcc Commands Compared for Speed, Thoroughness, and Locking (continued)

System Administration Guide 6-17

SYBASE SQL Server Release 10.0 How, When, and Why to Use the dbcc Commands

- Running dbcc commands on the copied database

- Running dbcc commands with the fix on appropriate objects in
the original database, if errors are detected that can be repaired
with the fix options

Since the dump is a logical copy of the database pages, any
problems in the original database are duplicated in the dumped
copy.

You should run dbcc checkdb regularly on the entire database, or
dbcc checktable on each table in the database. You might choose to
run the object-level commands rather than the database-level
check for performance reasons. dbcc checkdb acquires locks on the
objects while it checks them, and you cannot control the order in
which it checks the objects. For example, if you have one appli-
cation running that uses table4, table5, and table6, and the dbcc
checks take 20 minutes to complete, the application might be
blocked for a long time while you are using dbcc checkdb.

Using the table-level commands, you can intersperse checks on
tables not used in the application, thereby allowing the appli-
cation access in the intervals:

 dbcc checktable(table4)
 dbcc checktable(table1) /*not in application*/
 dbcc checktable(table5)
 dbcc checktable(table2) /*not in application*/
 dbcc checktable(table6)

• How often do you back up your databases with dump database?

The more often you back up your databases and dump your
transaction logs, the more data you can recover in case of failure.
You and the users at your site need to decide how much data
you are willing to lose in the event of a disaster and develop a
dump schedule to support that decision. After you schedule
your dumps, decide how to incorporate the dbcc commands into
that schedule.

An ideal time to dump a database is after you run a complete
check of that database using dbcc checkalloc, dbcc checkcatalog, and
dbcc checkdb. If these commands find no errors in the database,
you know that your backup contains a clean database. You can
use scripts to automate this process, sending output to a file and
using an operating system script to search the file for errors. Use
dbcc tablealloc or indexalloc on individual tables and indexes to
correct allocation errors reported by dbcc checkalloc.

6-18 Checking Database Consistency

How, When, and Why to Use the dbcc Commands SYBASE SQL Server Release 10.0

• How many tables contain highly critical data and how often does
that data change? How large are those tables?

If you have only a few tables containing critical data or data that
changes often, you may want to run the table- and index-level
dbcc commands more frequently on those tables.

What to Look for in dbcc Output

The output of most dbcc commands includes information that
identifies the object or objects being checked, and error messages that
indicate what problems, if any, the command finds in the object.
When dbcc tablealloc and dbcc indexalloc are run with the default fix
option, the output also indicates the repairs that the command
makes. Here’s an annotated example of dbcc tablealloc output for a
table with an allocation error:

dbcc tablealloc(table5)

Information from sysindexes about object being checked:
TABLE: table5 OBJID = 144003544
INDID=0 FIRST=337 ROOT=2587 SORT=0

Error message:
Msg 7939, Level 22, State 1:
Line 2:
Table Corrupt: The entry is missing from the OAM for object id
144003544 indid 0 for allocation page 2560.

Message indicating that error has been corrected:
The missing OAM entry has been inserted.
 Data level: 0. 67 Data Pages in 9 extents.

System Administration Guide 6-19

SYBASE SQL Server Release 10.0 How, When, and Why to Use the dbcc Commands

dbcc report on page allocation:
TOTAL # of extents = 9
Alloc page 256 (# of extent=1 used pages=8 ref pages=8)
EXTID:560 (Alloc page: 512) is initialized. Extent follows:
NEXT=0 PREV=0 OBJID=144003544 ALLOC=0xff DEALL=0x0 INDID=0 STATUS=0x0
Alloc page 512 (# of extent=2 used pages=8 ref pages=8)
Page 864 allocated (Alloc page: 768 Extent ID: 864 Alloc mask: 0x1)
Page 865 allocated (Alloc page: 768 Extent ID: 864 Alloc mask: 0x3)
Page 866 allocated (Alloc page: 768 Extent ID: 864 Alloc mask: 0x7)
Page 867 allocated (Alloc page: 768 Extent ID: 864 Alloc mask: 0xf)
Page 868 allocated (Alloc page: 768 Extent ID: 864 Alloc mask: 0x1f)
Page 869 allocated (Alloc page: 768 Extent ID: 864 Alloc mask: 0x3f)
Page 870 allocated (Alloc page: 768 Extent ID: 864 Alloc mask: 0x7f)
Page 871 allocated (Alloc page: 768 Extent ID: 864 Alloc mask: 0xff)
Alloc page 768 (# of extent=1 used pages=8 ref pages=8)
Alloc page 1024 (# of extent=1 used pages=8 ref pages=8)
Alloc page 1280 (# of extent=1 used pages=8 ref pages=8)
Alloc page 1536 (# of extent=1 used pages=8 ref pages=8)
Alloc page 1792 (# of extent=1 used pages=8 ref pages=8)
Alloc page 2048 (# of extent=1 used pages=8 ref pages=8)

(Output deleted....)
Information on resources used:

Statistical information for this run follows:

Total # of pages read = 68
Total # of pages found cache = 68
Total # of physical reads = 0
Total # of saved I/O = 0

Message printed on completion of dbcc command:
DBCC execution completed. If DBCC printed error messages, see your System
Administ rator.

6-20 Checking Database Consistency

How, When, and Why to Use the dbcc Commands SYBASE SQL Server Release 10.0

System Administration Guide 7-1

77. Developing a Backup and
Recovery Plan

Introduction

SQL Server has automatic recovery procedures to protect you from
power outages and computer failures. To protect yourself against
media failure, you must make regular and frequent backups of your
databases.

This chapter is part of a four-chapter unit on backup and recovery. It
provides information to help you develop a backup and recovery
plan. The overview of SQL Server’s backup and recovery processes
in this chapter includes:

• How the transaction log keeps track of database changes

• How checkpoints synchronize the database and transaction log

• The function of the dump database, dump transaction, load database, and
load transaction commands

• The role of the Backup Server in the backup and recovery process

• SQL Server’s automatic recovery process

It also covers backup and recovery issues you should address before
you begin using your system for production, such as:

• Choosing backup media

• Configuring your system for backup and recovery

• Creating logical names for local backup devices

• Scheduling backups of your system and user databases

• Granting permission to use the commands for backup and
recovery

For more information about See

dump, load, and sp_volchanged syntax Chapter 8, ‘‘Backing Up and
Restoring User Databases’’

Backing up and restoring the system
databases

Chapter 9, ‘‘Backing Up and
Restoring the System Databases’’

Using thresholds to automate backups Chapter 10, ‘‘Managing Free
Space with Thresholds’’

Table 7-1: Further Information About Backup and Recovery

7-2 Developing a Backup and Recovery Plan

Keeping Track of Database Changes SYBASE SQL Server Release 10.0

Keeping Track of Database Changes

SQL Server uses transactions to keep track of all database changes.
Transactions are SQL Server’s units of work. A transaction consists of
one or more Transact-SQL statements that succeed—or fail—as a
unit.

Each SQL statement that modifies data is considered a transaction.
Users can also define transactions by enclosing a series of statements
within a begin transaction ... end transaction block. For more information
about transactions, see “Transactions” in Volume 1 of the SQL Server
Reference Manual.

Each database has its own transaction log, the system table syslogs.
The transaction log automatically records every transaction issued
by each user of the database. You cannot turn off transaction logging.

The transaction log is a write-ahead log. When a user issues a
statement that would modify the database, SQL Server
automatically writes the changes to the log. After all changes for a
statement have been recorded in the log, they are written to an in-
cache copy of the data page. The data page remains in cache until the
memory is needed for another database page. At that time, it is
written to disk.

If any statement in a transaction fails to complete, SQL Server
reverses all changes made by the transaction. SQL Server writes an
“end transaction” record to the log at the end of each transaction,
recording the status (success or failure) of the transaction.

Getting Information about the Transaction Log

The transaction log contains enough information about each
transaction to ensure that it can be recovered. Use the dump transaction
command to copy the information it contains to tape or disk. Use
sp_spaceused syslogs to check the size of the log, or sp_helpsegment
logsegment to check the space available for log growth.

◆ WARNING!
Never use insert, update, or delete commands to modify syslogs .

System Administration Guide 7-3

SYBASE SQL Server Release 10.0 Synchronizing a Database and its Transaction Log: Checkpoints

Synchronizing a Database and its Transaction Log: Checkpoints

A checkpoint writes all “dirty” pages—pages that have been
modified in memory, but not on disk, since the last checkpoint—to
the database device. SQL Server’s automatic checkpoint mechanism
guarantees that data pages changed by completed transactions are
regularly written from the cache in memory to the database device.
Synchronizing the database and its transaction log shortens the time
it takes to recover the database after a system crash. Figure 12-1
illustrates the checkpoint process.

Setting the Recovery Interval

Typically, the automatic recovery process takes from a few seconds to
a few minutes per database. Time varies depending on the size of the
database, the size of the transaction log, and the number and size of
transactions that must be committed or rolled back.

Use the recovery interval configuration variable to specify the
maximum permissible recovery time, in minutes. SQL Server runs
automatic checkpoints often enough to recover the database within
that period of time.

Use sp_configure for a report on the current recovery interval:

sp_configure "recovery interval"

The default value, 5, allows recovery within 5 minutes per database.
Use sp_configure “recovery interval” followed by the reconfigure command
to change the recovery interval. For example, to set the recovery
interval to 3 minutes, issue these commands:

sp_configure "recovery interval", 3

reconfigure

➤ Note
The recovery interval has no effect on long-running transactions that are active

at the time SQL Server fails. It may take as much time to reverse these

transactions as it took to run them.

7-4 Developing a Backup and Recovery Plan

Synchronizing a Database and its Transaction Log: Checkpoints SYBASE SQL Server Release 10.0

The Automatic Checkpoint Procedure

Approximately once each minute, the checkpoint process “wakes
up” and checks each database on the server to see how many records
have been added to the transaction log since the last checkpoint. If
the server estimates that the time that would be required to recover
these transactions is greater than the database’s recovery interval,
SQL Server issues a checkpoint.

The modified pages are written from cache onto the database
devices, and the checkpoint event is recorded in the transaction log.
Then, the checkpoint process sleeps for another minute.

To see the checkpoint process, execute sp_who. The checkpoint
process usually displays as “CHECKPOINT SLEEP” in the cmd column:

spid status loginame hostname blk dbname cmd
----- ---------- ---------- -------- --- ------- ----------------
 1 running sa mars 0 master SELECT
 2 sleeping NULL 0 master NETWORK HANDLER
 3 sleeping NULL 0 master MIRROR HANDLER
 4 sleeping NULL 0 master CHECKPOINT SLEEP

Truncating the Log After Automatic Checkpoints

System Administrators can use the trunc log on chkpt database option to
truncate the transaction log every time SQL Server performs an
automatic checkpoint. Execute this command from the master
database:

sp_dboption database_name, "trunc log on chkpt",
true

This option is not suitable for production environments because it
does not make a copy of the transaction log before truncating it. Use
trunc log on chkpt only for:

• Databases whose transaction logs cannot be backed up because
they are not on a separate segment

• Test databases for which current backups are not important

➤ Note
If you leave the trunc log on chkpt option off (the default condition) the transaction

log continues to grow until you truncate it with the dump transaction command.

System Administration Guide 7-5

SYBASE SQL Server Release 10.0 Automatic Recovery After a System Failure or Shutdown

To protect your log from running out of space, you should design
your last-chance threshold procedure to dump the transaction log.
For more information about threshold procedures, see Chapter 10,
‘‘Managing Free Space with Thresholds’’.

Manually Requesting a Checkpoint

Database Owners can issue the checkpoint command to force all
modified pages in memory to be written to disk. Manual checkpoints
do not truncate the log, even if the trunc log on chkpt option of
sp_dboption is turned on.

Use the checkpoint command:

• As a precautionary measure in special circumstances—for
example, just before a planned shutdown with nowait so that SQL
Server’s recovery mechanisms will occur within the recovery
interval. (An ordinary shutdown performs a checkpoint.)

• To cause a change in database options to take effect after
executing the sp_dboption system procedure. (After you run
sp_dboption, an informational message reminds you to run
checkpoint.)

Automatic Recovery After a System Failure or Shutdown

Each time you restart SQL Server—for example, after a power
failure, an operating system failure, or the use of the shutdown
command—it automatically performs a set of recovery procedures
on each database.

The recovery mechanism compares each database to its transaction
log. If the log record for a particular change is more recent than the
data page, the recovery mechanism reapplies the change from the
transaction log. If a transaction was ongoing at the time of the failure,
the recovery mechanism reverses all changes that were made by the
transaction. This mechanism ensures that the entire transaction
succeeds or fails as a unit.

When SQL Server is booted, it performs database recovery in this
order:

1. Recovers master

2. Recovers sybsecurity

3. Recovers model

7-6 Developing a Backup and Recovery Plan

Using the Dump and Load Commands SYBASE SQL Server Release 10.0

4. Creates tempdb (by copying model)

5. Recovers sybsystemprocs

6. Recovers user databases, in order by sysdatabases.dbid

Users can log into SQL Server as soon as the system databases have
been recovered, but cannot access other databases until they have
been recovered.

Determining Whether Messages Are Displayed During Recovery

The configuration variable recovery flags determines whether SQL
Server displays detailed messages about each transaction on the
console screen during recovery. By default, these messages are not
displayed. To display messages, issue these commands:

sp_configure "recovery flags", 1

reconfigure

Using the Dump and Load Commands

In case of media failure, such as a disk crash, you can restore your
databases if—and only if—you have been making regular backups of
the databases and their transaction logs. Full recovery depends on
the regular use of the dump database and dump transaction commands to
back up databases and the load database and load transaction commands
to restore them. These commands are described briefly below and
more fully in Chapter 8, ‘‘Backing Up and Restoring User
Databases’’ and Chapter 9, ‘‘Backing Up and Restoring the System
Databases’’.

◆ WARNING!
Never use operating system copy commands to copy a database device.
Loading the copy into SQL Server causes massive database corruption.

Checking Database Consistency: dbcc

The dump commands can complete successfully even if your
database is corrupt. Before you back up a database, use the dbcc
commands to check its consistency. See Chapter 6, ‘‘Checking
Database Consistency’’, for more information.

System Administration Guide 7-7

SYBASE SQL Server Release 10.0 Using the Dump and Load Commands

Making Routine Database Dumps: dump database

The dump database command makes a copy of the entire database,
including both the data and the transaction log. dump database does
not truncate the log.

dump database allows dynamic dumps: users can continue to make
changes to the database while the dump takes place. This feature
makes it convenient to back up databases on a regular basis.

The dump database command executes in three phases. A progress
message informs you when each phase completes. When the dump
is finished, it reflects all changes that were made during its execution,
except for those initiated during Phase 3.

Making Routine Transaction Log Dumps: dump transaction

Use the dump transaction command (or its abbreviation dump tran) to
make routine backups of your transaction log. dump transaction is
similar to the incremental backups provided by many operating
systems. It copies the transaction log, providing a record of any
database changes made since the last database or transaction log
dump. Once dump transaction has copied the log, it truncates the
inactive portion.

dump transaction takes less time and storage space than a full database
backup, and is usually run more often. Users can continue to make
changes to the database while the dump is taking place. You can run
dump transaction only if the database stores its log on a separate
segment.

After a media failure, use the with no_truncate option of dump transaction
to backup your transaction log. This provides a record of the
transaction log up to the time of the failure.

Copying the Log After Device Failure: dump tran with no_truncate

When your data device fails and the database is inaccessible, use the
special with no_truncate option of the dump transaction command to get a
current copy of the log. This option does not truncate the log. You can
use it only if the transaction log is on a separate segment and the
master database is accessible.

7-8 Developing a Backup and Recovery Plan

Using the Dump and Load Commands SYBASE SQL Server Release 10.0

Restoring the Entire Database: load database

Use the load database command to load the backup created with dump
database. You can load the dump into a pre-existing database, or
create a new database with the for load option. When you create a new
database, allocate at least as much space as was allocated to the
original database.

◆ WARNING!
You cannot load a dump that was made on a different platform or with an
earlier version of SQL Server.
If the database you are loading includes tables that contain the primary
keys for tables in other databases, you must load the dump into the same
database name.

Put the database into single-user mode so that users cannot make
changes from the time you begin loading it until you have applied
the last transaction log dump. Before loading a database, lock it by
using sp_dboption to set the no chkpt on recovery, dbo use only, and read only
options to TRUE.

After the database is loaded, SQL Server may need to complete two
more tasks:

• It must “zero” all unused pages, if the database being loaded into
is larger than the dumped database.

• It must complete recovery, applying transaction log changes to
the data.

Depending on the number of unallocated pages, or the number of
long transactions, this can take a few seconds, or many hours for a
very large database. SQL Server will issue messages telling you that
it is zeroing pages, or that it has begun recovery. These messages are
normally buffered; in order to see them, issue this command:

set flushmessage on

Applying Changes to the Database: load transaction

Once you have loaded the database, use the load transaction command
(or its abbreviation, load tran) to load each transaction log dump in the
order in which it was made. This process reconstructs the database
by re-executing the changes recorded in the transaction log.

System Administration Guide 7-9

SYBASE SQL Server Release 10.0 Using the Dump and Load Commands

➤ Note
If users have made any changes between the load database and load transaction
commands, the load transaction fails. Lock the database, then reload it and re-

apply the transaction log dumps.

When the entire sequence of transaction log dumps has been loaded,
the database reflects all transactions that had committed at the time
of the last transaction log dump. Use sp_dboption to reset the no chkpt on
recovery, dbo use only, and read only options to FALSE so that users can
resume making changes to the database.

Using the Special dump transaction Options

Under certain circumstances, the simple model described above does
not apply. Table 7-2 describes when to use the special with no_log and
with truncate_only options instead of the standard dump transaction
command.

Using the Special Load Options to Identify Dump Files

Use the special with headeronly option to provide header information
for a specified file or for the first file on a tape. Use the with listonly
option to return information about all files on a tape.

When Use

The log is on the same segment as the data dump transaction with truncate_only to truncate the
log

dump database to copy the entire database,
including the log

You are not concerned with the recovery
of recent transactions (for example, in an
early development environment)

dump transaction with truncate_only to truncate the
log and

dump database to copy the entire database

Your usual method of dumping the
transaction log (either the standard dump
transaction command or dump transaction
with truncate_only) fails because of
insufficient log space

dump transaction with no_log to truncate the log
without recording the event and

dump database immediately after to copy the entire
database, including the log

Table 7-2: When to Use dump transaction with truncate_only or with no_log

7-10 Developing a Backup and Recovery Plan

Using the Dump and Load Commands SYBASE SQL Server Release 10.0

➤ Note
These options do not actually load databases or transaction logs on the tape.

Backup and Recovery Illustrated

Figure 7-1 illustrates the process of restoring a database that is
created at 4:30 pm on Monday and dumped immediately after. Full
database dumps are made every night at 5 pm. Transaction log
dumps are made at 10 am, noon, 2 pm, and 4 pm every day:

Figure 7-1: Restoring a Database from Backups

Mon, 5:00 pm
dump database

Tues, 10:00 am
dump transaction

dump transaction
Tues, noon

dump transaction
Tues, 2:00 pm

Performing Routine Dumps Restoring the Database from Dumps

Mon, 4:30 pm
create database

dump transaction
Tues, 4:00 pm

Tues, 5:00 pm
dump database

Tape 1 (180 MB)

Tape 2 (45 MB)

Tape 3 (45 MB)

Tape 4 (45 MB)

Tape 5 (45 MB)

Tape 6 (180 MB)

Tues, 6:15 pm dump transaction
Tape 7 with no_truncate

Tues, 6:20 pm
load database

Tape 6

Tues, 6:35 pm
load transactionTape 7

Tues, 6:00 pm Data Device Fails!

System Administration Guide 7-11

SYBASE SQL Server Release 10.0 Using the Dump and Load Commands

If the disk that stores the data fails on Tuesday at 6:00 pm, use the
following steps to restore the database:

1. Use dump transaction with no_truncate to get a current transaction log
dump.

2. Use load database to load the most recent database dump, Tape 6.

3. Use load transaction to apply the most recent transaction log dump,
Tape 7.

Figure 7-2 illustrates how to restore the database when the data
device fails at 4:59 pm on Tuesday—just before the operator is
scheduled to make the nightly database dump:

Figure 7-2: Restoring a Database, a Second Scenario

Tues, 5:00 pm
dump databaseTape 6

Mon, 5:00 pm
dump database

Tues, 10:00 am
dump transaction

dump transaction
Tues, noon

dump transaction
Tues, 2:00 pm

Performing Routine Dumps Restoring the Database from Dumps

Mon, 4:30 pm
create database

dump transaction
Tues, 4:00 pm

Tape 1 (180 MB)

Tape 2 (45 MB)

Tape 3 (45 MB)

Tape 4 (45 MB)

Tues, 5:15 pm
Tape 6 with no_truncate

Tues, 5:20 pm
load database

Tues, 5:35 pm
load transaction

Tape 5 (45 MB)

Tues, 4:59 pm Data Device Fails!

Tape 1

dump transaction

Tape 2

Tues, 5:40 pm
load transactionTape 3

Tues, 5:45 pm
load transactionTape 4

Tues, 5:50 pm
load transactionTape 5

Tues, 5:55 pm
load transactionTape 6

7-12 Developing a Backup and Recovery Plan

Designating Responsibility for Backups SYBASE SQL Server Release 10.0

Use the following steps to restore the database:

1. Use dump transaction with no_truncate to get a current transaction log
dump on Tape 6 (the tape you would have used for the routine
database dump).

2. Use load database to load the most recent database dump, Tape 1.

3. Use load transaction to load Tapes 2, 3, 4, and 5 and the most recent
transaction log dump, Tape 6.

Designating Responsibility for Backups

Many organizations have an operator whose job is to perform all
backup and recovery operations. Only a System Administrator,
Database Owner, or Operator can execute the dump and load
commands. The Database Owner can dump only his or her own
database. The Operator and System Administrator can dump and
load any database.

Any user can execute sp_volchanged to notify the Backup Server when
a tape volume is changed. On OpenVMS systems, the operator
responsible for changing tape volumes must have permission to
execute the REPLY command.

Using the Backup Server for Backup and Recovery

Dumps and loads are performed by an Open Server program,
Backup Server, running on the same machine as SQL Server. (On
VAX clusters, Backup Server can run on any machine in the cluster
with access to every database device to be dumped or loaded.) You
can perform backups over the network, using a Backup Server on a
remote computer and another on the local computer.

Backup Server:

• Creates and loads from “striped dumps”. Dump striping allows
you to use up to 32 backup devices in parallel. This splits the
database into approximately equal portions and backs up each
portion to a separate device.

• Creates and loads single dumps that span several tapes.

• Dumps and loads across the network to a Backup Server running
on another machine.

• Dumps several databases or transaction logs to a single tape.

System Administration Guide 7-13

SYBASE SQL Server Release 10.0 Using the Backup Server for Backup and Recovery

• Loads a single file from a tape that contains many database or log
dumps.

• Supports platform-specific tape handling options.

• Directs volume-handling requests to the session where the dump
or load command was issued, or to its operator console.

• Detects the physical characteristics of the dump devices to
determine protocols, block sizes, and other characteristics.

Relationship Between SQL Server and Backup Servers

Figure 7-3 shows two users performing backup activities
simultaneously on two databases:

• User1 is dumping database db1 to a remote Backup Server.

• User2 is loading database db2 from the local Backup Server.

Each issues the appropriate dump or load command from a SQL
Server session. SQL Server interprets the command and sends
remote procedure calls (RPCs) to the Backup Server. The calls
indicate which database pages to dump or load, which dump
devices to use, and other options.

While the dumps and loads execute, SQL Server and Backup Server
use remote procedure calls to exchange instructions and status
messages. Backup Server—not SQL Server—performs all data
transfer for the dump and load commands.

7-14 Developing a Backup and Recovery Plan

Using the Backup Server for Backup and Recovery SYBASE SQL Server Release 10.0

Figure 7-3: SQL Server/Backup Server Installation with a Remote Backup Server

When the local Backup Server receives user1’s dump instructions, it
reads the specified pages from the database devices and sends them
to the remote Backup Server. The remote Backup Server saves the
data to off-line media.

Simultaneously, the local Backup Server performs user2’s load
command by reading data from local dump devices and writing it to
the database device.

Task 1

Task 2

S
Q
L

user1

user2

RPC(DUMPDB, “db1”...)

ReturnStatus
RPC(LOADDB, “db2”,.)

ReturnStatus

Task 1

Task 2

... DB devices... ... Dump devices...

Task 1
... Dump devices...

B
a
c
k
u
p

B
a
c
k
u
p

load database db2

Task 1a

dump database db1...
at remote_bs

System Administration Guide 7-15

SYBASE SQL Server Release 10.0 Using the Backup Server for Backup and Recovery

Communicating with the Backup Server

To use the dump and load commands, your SQL Server must be able
to communicate with its Backup Server. These are the requirements:

• You must have a Backup Server running on the same machine as
the SQL Server (or on the same cluster for OpenVMS).

• The Backup Server must be listed in the master..sysservers table.
The Backup Server entry, SYB_BACKUP, is created in sysservers
when you install SQL Server. Use sp_helpserver to see this
information. For information about changing the default Backup
Server, see Chapter 12, ‘‘Managing Remote Servers’’.

• The Backup Server must be listed in the interfaces file. The entry
for the local Backup Server is created when you install SQL
Server. If you have installed a remote Backup Server on another
machine, create the interfaces file on a file system shared by both
machines or copy the entry to your local interfaces file.

• The user who starts the Backup Server process must have write
permission for the dump devices. The “sybase” user, who usually
starts SQL Server and Backup Server, can read from and write to
the database devices.

• Your SQL Server must be configured for remote access. By
default, SQL Server is installed with remote access enabled. See
‘‘Configuring Your Server for Remote Access’’ on page 7-17 for
more information.

Mounting a New Volume

During the backup and restore process, it may be necessary to
change tape volumes. If the Backup Server detects a problem with
the currently mounted volume, it requests a volume change by
sending messages to either the client or its operator console. After
mounting another volume, the operator notifies the Backup Server
by executing the sp_volchanged system procedure on SQL Server.

On UNIX systems, the Backup Server requests a volume change
when the tape capacity has been reached. The operator mounts
another tape, then executes sp_volchanged. Figure 7-4 illustrates this
process.

On OpenVMS systems, the operating system requests a volume
change when it detects the end of a volume or when the specified

7-16 Developing a Backup and Recovery Plan

Using the Backup Server for Backup and Recovery SYBASE SQL Server Release 10.0

drive is offline. The operator uses the REPLY command to reply to
these messages.

Time Operator, using isql SQL Server Backup Server

Issues the dump database
command

Sends dump request to
Backup Server

Receives dump request
message from SQL Server

Sends message for tape
mounting to operator

Waits for operator’s reply

Receives volume change
request from Backup Server

Mounts tapes

Executes sp_volchanged

Checks tapes

If tapes are okay, begins
dump

When tape is full, sends
volume change request to
operator

Receives volume change
request from Backup Server

Mounts tapes

Executes sp_volchanged

Continues dump

When dump is complete,
sends messages to operator
and SQL Server

Receives message that dump
is complete

Removes and labels tapes

Receives message that dump
is complete

Releases locks

Completes the dump database
command

Figure 7-4: Changing Tape Volumes on a UNIX System

System Administration Guide 7-17

SYBASE SQL Server Release 10.0 Starting and Stopping the Backup Server

Starting and Stopping the Backup Server

Use the startserver utility to start a Backup Server on the same machine
as the SQL Server. For more information about startserver syntax, see
the SQL Server Utility Programs for your operating system.

Use the shutdown command to shut down a Backup Server.
See‘‘Diagnosing System Problems’’ and Volume 1 of the SQL Server
Reference Manual for information about this command.

Configuring Your Server for Remote Access

The remote access configuration variable is set to 1 when you install
SQL Server. This allows your SQL Server to execute remote
procedure calls to the Backup Server.

For security reasons, you may want to disable remote access except
during times when dumps and loads are taking place. Use the
following commands to disable remote access:

sp_configure "remote access", 0

reconfigure

Use the following commands to re-enable remote access right before
a dump or load:

sp_configure "remote access", 1

reconfigure

The remote access configuration variable is dynamic, and does not
require a reboot of SQL Server to take effect. Only a System Security
Officer can set the remote access variable. Only a System
Administrator can execute the reconfigure command.

Choosing Backup Media

Tapes are preferred as dump devices since they permit a library of
database and transaction log dumps to be kept off-line. Large
databases can span multiple tape volumes. On UNIX systems, the
Backup Server requires non-rewinding tape devices for all dumps
and loads.

For a list of supported dump devices, see the System Administration
Guide Supplement for your platform.

7-18 Developing a Backup and Recovery Plan

Creating Logical Device Names for Local Dump Devices SYBASE SQL Server Release 10.0

Protecting Backup Tapes From Being Overwritten

The tape retention configuration variable determines how many days
backup tapes are protected from being overwritten. When you install
SQL Server, tape retention has a value of 0. This means that backup
tapes can be overwritten immediately.

Use sp_configure to change the tape retention value. The new value takes
effect the next time you reboot SQL Server:

sp_configure "tape retention", 14

reconfigure

Both the dump database and dump transaction commands provide a
retaindays option, which overrides the tape retention value for a
particular dump.

Dumping to Files or Disks

In general, dumping to a file or to a disk is not recommended. If the
disk or computer containing that file crashes, there may be no way to
recover the dumps. On UNIX and PC systems, this is your only option
if the master database is too large to fit on a single tape volume, unless
you have a second SQL Server that can issue sp_volchanged requests.

Dumps to a file or disk can be copied to tape for off-line storage, but
these tapes must be copied back to an on-line file before they can be
read by SQL Server. A dump that is made to a disk file and then
copied to tape cannot be read directly from tape by Backup Server.

Creating Logical Device Names for Local Dump Devices

If you are dumping to or loading from local devices (that is, you
aren’t performing backups across a network to a remote Backup
Server), you can specify dump devices either by providing their
physical locations or by specifying their logical device names. In this
case, you may want to create logical dump device names in the
sysdevices system table of the master database.

System Administration Guide 7-19

SYBASE SQL Server Release 10.0 Creating Logical Device Names for Local Dump Devices

➤ Note
If you are dumping to or loading from a remote Backup Server, you must

specify the absolute pathname of the dump device. You cannot use a logical

device name.

The sysdevices table stores information about each database and
backup device, including its physical_name (the actual operating
system device or file name) and its device_name (or logical name,
known only within SQL Server). On most platforms, SQL Server has
one or two aliases for tape devices installed in sysdevices. The
physical names for these devices are common disk drive names for
the platform; the logical names are tapedump1 and tapedump2.

When creating backup scripts and threshold procedures, it is
advantageous to use logical names, rather than physical device
names, whenever possible. Scripts and procedures that refer to
actual device names must be modified each time a backup device is
replaced. If your scripts and procedures refer to logical device
names, you can simply drop the sysdevices entry for the failed device
and create a new entry that associates the logical name with a
different physical device.

Listing the Current Device Names

To list the backup devices for your system, run the following query:

select * from master..sysdevices
 where status = 16 or status = 24

To list both the physical and logical names for database and backup
devices, use the sp_helpdevice system procedure, as below:

sp_helpdevice tapedump1

device_name physical_name
 description
 status cntrltype device_number low high
 ------ --------- ------------- -------- -------
tapedump1 /dev/nrmt4

tape, 625 MB, dump device
 16 3 0 0 20000

7-20 Developing a Backup and Recovery Plan

Scheduling Backups of User Databases SYBASE SQL Server Release 10.0

Adding a Backup Device

Use the system procedure sp_addumpdevice to add a backup device:

sp_addumpdevice{ "tape" | "disk"} , device_name ,
physicalname , size

The physicalname can be either an absolute pathname or a relative
pathname. During dumps and loads, the Backup Server resolves
relative pathnames by looking in SQL Server’s current working
directory.

The size is the capacity of the tape in megabytes. OpenVMS systems
ignore the size parameter if it is specified. Other platforms require
this parameter for tape devices but ignore it for disk devices. The
Backup Server uses the size parameter if the dump command does
not specify a tape capacity.

The size must be at least five database pages (each page requires 2
megabytes for most platforms, 4 megabytes for Stratus) and should
be slightly below the rated capacity for the device.

Redefining a Logical Device Name

To use an existing logical device name for a different physical device,
drop the device with sp_dropdevice and then add it with
sp_addumpdevice. For example:

sp_dropdevice tapedump2

sp_addumpdevice "tape", tapedump2, "/dev/nrmt8", 625

Scheduling Backups of User Databases

One of the major tasks in developing a backup plan is to determine
how often to back up your databases. The frequency of your backups
determines how much work you can lose in the event of a media
failure. This section presents some guidelines about when to dump
user databases and transaction logs.

Scheduling Routine Backups

Dump each user database just after you create it, to provide a base
point, and on a fixed schedule thereafter. Daily backups of the
transaction log and weekly database backups are the minimum
recommended. Many installations with large and active databases

System Administration Guide 7-21

SYBASE SQL Server Release 10.0 Scheduling Backups of User Databases

make database dumps every day and transaction log dumps every
half hour or hour.

Interdependent databases—databases where there are cross-
database transactions, triggers, or referential integrity—should be
backed up at the same time, during a period when there is no cross-
database data modification activity. If one of these databases fails
and needs to be reloaded, they should all be reloaded from these
simultaneous dumps.

◆ WARNING!
Always dump both databases immediately after adding, changing, or
removing a cross-database constraint or dropping a table that contains a
cross-database constraint.

Other Times to Back Up a Database

In addition to routine dumps, you should dump a database each
time you create a new index, perform an unlogged operation, or run
the dump transaction with no_log or dump transaction with truncate_only.

Dumping a Database After Creating an Index

When you add an index to a table, the create index command is
recorded in the transaction log. As it fills the index pages with
information, however, SQL Server does not log the changes.

If your database device fails after you create an index, the load
transaction command may take as long to reconstruct the index as the
create index command took to build it. To avoid lengthy delays, dump
each database immediately after creating an index on one of its
tables.

Dumping A Database After Unlogged Operations

SQL Server writes the data for the following commands directly to
disk:

• Non-logged writetext

• select into on a permanent table

• “Fast” bulk copy (bcp into a table with no triggers or indexes)

Because these changes are not recorded in the transaction log, you
cannot recover them from a transaction log dump or recover any

7-22 Developing a Backup and Recovery Plan

Scheduling Backups of master SYBASE SQL Server Release 10.0

changes made to the database after one of these commands. To
ensure that these commands are recoverable, issue a dump database
command immediately after executing any of these operations.

Dumping a Database When the Log Has Been Truncated

The dump transaction with truncate_only and dump transaction with no_log
commands remove transactions from the log without making a
backup copy. To ensure recoverability, you must dump the database
each time you are forced to run either command by lack of disk
space. SQL Server prohibits you from copying the transaction log
until you have done so.

If the trunc log on chkpt database option is set to true, SQL Server
automatically truncates the log each time an automatic checkpoint
occurs. If this option is set on, you must dump the entire database—
not the transaction log—to ensure recoverability.

Scheduling Backups of master

Backups of the master database are used as part of the recovery
procedure in case of a failure that affects the master database. If you
don’t have a current backup of master, you may be forced to
reconstruct vital system tables at a time when you are under pressure
to get your databases up and running again. Be prepared; back up
the master database regularly and frequently.

Dumping master After Each Change

Back up the master database with dump database each time you change
it. Although you can restrict the creation of database objects in master,
system procedures such as sp_addlogin and sp_droplogin, sp_password
and sp_modifylogin allow users to modify its system tables. Be sure to
back up the master database on a frequent basis to record these
changes.

Back up the master database after each command that affects disks,
storage, databases, or segments. Always back up master after issuing
any of the following commands and system procedures:

• disk init, sp_addumpdevice and sp_dropdevice

• All disk mirroring commands

• The segment system procedures sp_addsegment, sp_dropsegment and
sp_extendsegment

System Administration Guide 7-23

SYBASE SQL Server Release 10.0 Scheduling Backups of model

• create procedure and drop procedure

• sp_logdevice

• sp_configure

• create database and alter database

Saving Scripts and System Tables

For further protection, save the scripts containing all of your disk init,
create database, and alter database commands and make a hardcopy of
your sysdatabases, sysusages, and sysdevices tables each time you issue
one of these commands.

Changes that result from these commands cannot be recovered
automatically with buildmaster. If you keep your scripts—files
containing Transact-SQL statements—you can run them to recreate
the changes. Otherwise, you must re-issue each command against
the rebuilt master database.

You should also keep a hardcopy of the syslogins. When you recover
master from a dump, compare the hardcopy to your current version
of the table to be sure that users retain the same user IDs.

Truncating master’s Transaction Log

Since the master database’s transaction log is on the same database
devices as the data, you cannot back up its transaction log separately.
You cannot move the log of the master database. You must always use
dump database to back up the master database. Use dump transaction with
the truncate_only option periodically (for instance, after each database
dump) to purge the transaction log of the master database.

Scheduling Backups of model

Keep a current database dump of the model database. Each time you
change model, make a new backup. If model is damaged and you do
not have a backup, you must re-do all of the changes you have made
in order to restore model.

7-24 Developing a Backup and Recovery Plan

Scheduling Backups of sybsystemprocs SYBASE SQL Server Release 10.0

Truncating model’s Transaction Log

model, like master, stores its transaction log on the same database
devices as the data. You must always use dump database to back up the
model database and dump transaction with the truncate_only option to
purge the transaction log after each database dump.

Scheduling Backups of sybsystemprocs

The sybsystemprocs database stores only system procedures. It is very
easy to restore this database by running the installmaster script, unless
you make changes to the database.

If you change permissions on some system procedures, or create
your own system procedures in sybsystemprocs, your two recovery
choices are:

• Run the installmaster script, and then re-do all of your changes by
re-creating your procedures, or re-executing your grant and revoke
commands.

• Back up sybsystemprocs each time your change it.

Both of these recovery options are described in Chapter 9, ‘‘Backing
Up and Restoring the System Databases’’.

Like other system databases, sybsystemprocs stores its transaction log
on the same device as the data. You must always use dump database to
back up the sybsystemprocs database. By default, the trunc log on chkpt
option is turned on in sybsystemprocs, so you should not need to
truncate the transaction log. If you change this database option, be
sure to truncate the log when you dump the database.

If you are running on a UNIX system or on a PC and have only one
SQL Server that can communicate with your Backup Server, be sure
that the entire dump of sybsystemprocs fits on a single dump device.
Signalling volume changes requires the sp_volchanged system
procedure, and you cannot use this procedure on a server while the
sybsystemprocs database is in the process of recovery.

Gathering Backup Statistics

Once you have finished reading this chapter, you should read
Chapter 8, ‘‘Backing Up and Restoring User Databases’’ and Chapter
9, ‘‘Backing Up and Restoring the System Databases’’. Then practice
using the backup and load commands.

System Administration Guide 7-25

SYBASE SQL Server Release 10.0 Gathering Backup Statistics

Use dump database to make several practice backups of an actual user
database and dump transaction to back up a transaction log. Recover the
database with the load database command and apply successive
transaction log dumps with the load transaction command.

Keep statistics on how long each dump and load takes and how
much space it requires.The more closely you approximate real-life
backup conditions, the more meaningful your predictions will be.

Once you have developed and tested your backup procedures,
commit them to paper. Determine a reasonable backup schedule and
adhere to it. If you develop, document, and test your backup
procedures ahead of time, you will be much better prepared to get
your databases online when disaster strikes.

7-26 Developing a Backup and Recovery Plan

Gathering Backup Statistics SYBASE SQL Server Release 10.0

System Administration Guide 8-1

User Databases
8. Backing Up and Restoring

Introduction

Regular and frequent backups are your only protection against
database damage that results from failure of your database devices.

This chapter is part of a four-chapter unit on backup and recovery. It
describes how to use the dump and load commands for backup,
recovery, and log truncation. It includes information on command
syntax and step-by-step procedures for recovering databases after a
device failure.

Dump and Load Command Syntax

The dump database, dump transaction, load database, and load transaction
commands have parallel syntax. Routine dumps and loads require
the name of a database and at least one dump device. The commands
can also include the following options:

• at server_name to specify the remote Backup Server

• density, blocksize, and capacity to specify tape storage characteristics

• dumpvolume to specify the volume name of the ANSI tape label

• file = filename to specify the name of the file to dump to or load
from

• stripe on stripe_device to specify additional dump devices

• dismount, unload, init, and retaindays to specify tape handling

• notify to specify whether Backup Server messages are sent to the
client that initiated the dump or load or to the operator_console

For more information about See

Backup and recovery issues to address
before production

Chapter 7, ‘‘Developing a Backup
and Recovery Plan’’

Backing up and restoring the system
databases

Chapter 9, ‘‘Backing Up and
Restoring the System Databases’’

Using thresholds to automate backups Chapter 10, ‘‘Managing Free
Space with Thresholds’’

Table 8-1: Further Information About Backup and Recovery

8

8-2 Backing Up and Restoring User Databases

Dump and Load Command Syntax SYBASE SQL Server Release 10.0

Table 8-4 shows the syntax for routine database and log dumps and
for dumping the log after a device failure. It indicates what type of
information each part of the dump database and dump transaction
statement provides:

Information Provided
Task

Routine Database or Log Dump Log Dump After Device Failure

Command dump {database | transaction} dump transaction

Database name database_name database_name

Dump device to stripe_device to stripe_device

Remote Backup Server [at server_name] [at server_name]

Tape device characteristics [density = density,
blocksize = number_bytes,
capacity = number_kilobytes]

[density = density,
blocksize = number_bytes,
capacity = number_kilobytes]

Volume name [, dumpvolume = volume_name] [, dumpvolume = volume_name]

File name [, file = file_name] [, file = file_name]

Characteristics of additional
devices (up to 31 devices; one
set per device)

[stripe on stripe_device
[at server_name]
[density = density,
blocksize = number_bytes,
capacity = number_kilobytes,
file = file_name,
dumpvolume = volume_name]]
...

[stripe on stripe_device
[at server_name]
[density = density,
blocksize = number_bytes,
capacity = number_kilobytes,
file = file_name,
dumpvolume = volume_name]]
...

Options that apply to entire
dump

[with {
density = density,
blocksize = number_bytes,
capacity = number_kilobytes,
file = file_name,
[nodismount | dismount],
[nounload | unload],
[retaindays = number_days],
[noinit | init],
file = file_name,
dumpvolume = volume_name

[with {
density = density,
blocksize = number_bytes,
capacity = number_kilobytes,
file = file_name,
[nodismount | dismount],
[nounload | unload],
[retaindays = number_days],
[noinit | init],
file = file_name,
dumpvolume = volume_name,

Do not truncate log no_truncate

Message destination [, notify = {client | operator_console}] }] [, notify = {client | operator_console}] }]

Table 8-2: Syntax for Routine Dumps and for Log Dumps After Device Failure

System Administration Guide 8-3

SYBASE SQL Server Release 10.0 Dump and Load Command Syntax

Table 8-3 shows the syntax for loading a database, applying
transactions from the log, and returning information about dump
headers and files:

Table 8-4 shows the syntax for truncating a log:

• That is not on a separate segment

• Without making a backup copy

• With insufficient free space to successfully complete a dump
transaction or dump transaction with truncate_only command.

Information Provided

Task

Load Database or
Apply Recent Transactions

Return Header or File
Information But Do Not Load Backup

Command load {database | transaction} load {database | transaction}

Database name database_name database_name

Dump device from stripe_device from stripe_device

Remote Backup Server [at server_name] [at server_name]

Tape device characteristics [density = density,
blocksize = number_bytes]

[density = density,
blocksize = number_bytes]

Volume name [, dumpvolume = volume_name] [, dumpvolume = volume_name]

File name [, file = file_name] [, file = file_name]

Characteristics of additional
devices
 (up to 31 devices; one set per
device)

[stripe on stripe_device
[at server_name]
[density = density,
blocksize = number_bytes,
file = file_name,
dumpvolume = volume_name]]
...

[stripe on stripe_device
[at server_name]
[density = density,
blocksize = number_bytes,
file = file_name,
dumpvolume=volume_name]]
...

Tape handling [with{
[density = density,
blocksize = number_bytes,
dumpvolume = volume_name,
file = file_name,
[nodismount | dismount],
[nounload | unload]

[with{
[density = density,
blocksize = number_bytes,
dumpvolume = volume_name,
file = file_name,
[nodismount | dismount],
[nounload | unload]

Provide header information [, headeronly]

List dump files [, listonly [= full]]

Message destination [, notify = {client | operator_console}] }] [, notify = {client | operator_console}] }]

Table 8-3: Syntax for the Load Commands

8-4 Backing Up and Restoring User Databases

Dump and Load Command Syntax SYBASE SQL Server Release 10.0

The remainder of this chapter provides greater detail about the
information specified in dump and load commands and volume
change messages. Routine dumps and loads are described first,
followed by log dumps after device failure and the special syntax for
truncating logs without making a backup copy.

For information about the permissions required to execute the dump
and load commands, refer to ‘‘Designating Responsibility for
Backups’’ in Chapter 7, ‘‘Developing a Backup and Recovery
Plan’’.

Information
Provided

Task

Truncate Log On Same
Segment as Data

Truncate Log Without Making
a Copy

Truncate Log with Insufficient Free
Space

Command dump transaction dump transaction dump transaction

Database name database_name database_name database_name

Do Not Copy Log with truncate_only with truncate_only with no_log

Table 8-4: Special dump transaction Options

System Administration Guide 8-5

SYBASE SQL Server Release 10.0 Specifying the Database and Dump Device

Specifying the Database and Dump Device

At minimum, all dump and load commands must include the name
of the database being dumped or loaded. Commands that dump or
load data (rather than just truncating a transaction log) must also
include a dump device:

Rules for Specifying Database Names

The database name can be specified as a literal, a local variable, or a
parameter to a stored procedure.

If you are loading a database from a dump:

• The database must exist. You can create a database with the for
load option of create database, or load over an existing database.
Loading a database always over-writes all of the information in
the existing database.

Backing Up a Database or Log Loading a Database or Log

Database name
Dump device

dump {database | tran} database_name
to stripe_device

load {database | tran} database_name
from stripe_device

[at server_name]
[density = density,
blocksize = number_bytes,
capacity = number_kilobytes,
dumpvolume = volume_name,
file = file_name]
[stripe on stripe_device
[at server_name]
[density = density,
blocksize = number_bytes,
capacity = number_kilobytes,
dumpvolume = volume_name,
file = file_name] ...]
[with{
density = density,
blocksize = number_bytes,
capacity = number_kilobytes,
dumpvolume = volume_name,
file = file_name,
[nodismount | dismount],
[nounload | unload],
retaindays = number_days,
[noinit | init],
[notify = {client | operator_console}] }]

[at server_name]
[density = density,
blocksize = number_bytes
dumpvolume = volume_name
file = file_name]
[stripe on stripe_device
[at server_name]
[density = density,
blocksize = number_bytes,
dumpvolume = volume_name,
file = file_name] ...]
[with{
density = density,
blocksize = number_bytes,
dumpvolume = volume_name,
file = file_name,
[nodismount | dismount],
[nounload | unload],
[notify = {client | operator_console}] }]

Table 8-5: Indicating the Database Name and Dump Device

8-6 Backing Up and Restoring User Databases

Specifying the Database and Dump Device SYBASE SQL Server Release 10.0

• You do not need to give the same database name as the name of
the database you dumped. For example, you can dump the pubs2
database, create another database called pubs2_archive, and load
the dump into the new database.

◆ WARNING!
You should never change the name a database that contains primary
keys for references from other databases. If you must load a dump from
such a database and provide a different name, first drop the references to
it from other databases.

Rules for Specifying Dump Devices

Use the following rules when specifying the dump device:

• You can specify the dump device as a literal, a local variable, or a
parameter to a stored procedure.

• You cannot dump to or load from the “null device” (on UNIX,
/dev/null; on OpenVMS, any device name beginning with NL; not
applicable to PC platforms).

• When dumping to or loading from a local device, you can use any
of the following forms to specify the dump device:

- An absolute pathname

- A relative pathname

- A logical device name from the sysdevices system table

The Backup Server resolves relative pathnames using SQL
Server’s current working directory.

• When dumping or loading across the network:

- You must specify the absolute pathname of the dump device.
(You cannot use a relative pathname or a logical device name
from the sysdevices system table.)

- The pathname must be valid on the machine on which the
Backup Server is running.

- If the name includes any characters except letters, numbers or
the underscore (_), you must enclose it in quotes.

System Administration Guide 8-7

SYBASE SQL Server Release 10.0 Specifying the Database and Dump Device

Examples

The following examples use a single device for dumps and loads. (It
is not necessary to use the same device for dumps and loads.)

On UNIX:

dump database pubs2 to "/dev/nrmt4"

load database pubs2 from "/dev/nrmt4"

On OpenVMS:

dump database pubs2 to "MTA0:"

load database pubs2 from "MTA0:"

For PC platform examples, refer to the System Administration Guide
Supplement.

8-8 Backing Up and Restoring User Databases

Specifying a Remote Backup Server SYBASE SQL Server Release 10.0

Specifying a Remote Backup Server

Use the at server_name clause to send dump and load requests across
the network to a Backup Server running on another machine:

This is ideal for installations that use a single machine with multiple
tape devices for all backups and loads. Operators can be stationed at
these machines, ready to service all tape change requests.

The server_name must appear in the interfaces file on the computer
where SQL Server is running, but does not need to appear in the
sysservers table.

The following examples dump to and load from the remote Backup
Server REMOTE_BKP_SERVER:

On UNIX:

dump database pubs2
to "/dev/nrmt0" at REMOTE_BKP_SERVER

Backing Up a Database or Log Loading a Database or Log

dump {database | tran} database_name
to stripe_device

load {database | tran} database_name
from stripe_device

Remote Backup Server [at server_name] [at server_name]

[density = density,
blocksize = number_bytes,
capacity = number_kilobytes,
dumpvolume = volume_name,
file = file_name]
[stripe on stripe_device
[at server_name]
[density = density,
blocksize = number_bytes,
capacity = number_kilobytes,
dumpvolume = volume_name,
file = file_name] ...]
[with{
density = density,
blocksize = number_bytes,
capacity = number_kilobytes,
dumpvolume = volume_name,
file = file_name,
[nodismount | dismount],
[nounload | unload],
retaindays = number_days,
[noinit | init],
[notify = {client | operator_console}] }]

[density = density,
blocksize = number_bytes,
dumpvolume = volume_name,
file = file_name]
[stripe on stripe_device
[at server_name]
[density = density,
blocksize = number_bytes,
dumpvolume = volume_name,
file = file_name] ...]
[with{
density = density,
blocksize = number_bytes,
dumpvolume = volume_name,
file = file_name,
[nodismount | dismount],
[nounload | unload],
[notify = {client | operator_console}] }]

Table 8-6: Dumping to or Loading from a Remote Backup Server

System Administration Guide 8-9

SYBASE SQL Server Release 10.0 Specifying Tape Density, Blocksize, and Capacity

load database pubs2
from "/dev/nrmt0" at REMOTE_BKP_SERVER

On OpenVMS:

dump database pubs2
to "MTA0:" at REMOTE_BKP_SERVER

load database pubs2
from "MTA0:" at REMOTE_BKP_SERVER

For PC platform examples, refer to the System Administration Guide
Supplement.

Specifying Tape Density, Blocksize, and Capacity

In most cases, the Backup Server uses a default tape density and
blocksize that are optimal for your operating system; we recommend
that you use them. The density and blocksize options allow you to
override these defaults when they are not appropriate for particular
devices. The capacity option allows you to specify tape capacity on
platforms that do not reliably detect the end-of-tape marker.

You can specify a density, blocksize, and capacity for each dump
device. You can also specify the density, blocksize, and capacity options in
the with clause, for all dump devices. Characteristics that are specified
for an individual tape device take precedence over those specified in
the with clause.

8-10 Backing Up and Restoring User Databases

Specifying Tape Density, Blocksize, and Capacity SYBASE SQL Server Release 10.0

The following sections provide greater detail about the density,
blocksize, and capacity options.

Overriding the Default Density

The dump and load commands use the default tape density for your
operating system. In most cases, this is the optimal density for tape
dumps.

When dumping to tape on OpenVMS systems, you can override the
default density with the density = density option. Valid densities are
800, 1600, 6250, 6666, 10000, and 38000. Not all densities are valid for
all tape drives; specify a value that is correct for your drive.

This option has no effect on OpenVMS tape loads or on UNIX and PC
platform dumps or loads.

Backing Up a Database or Log Loading a Database or Log

dump {database | tran} database_name
to stripe_device [at server_name]

load {database | tran} database_name
from stripe_device [at server_name]

Characteristics of a
Single Tape Device

[density = density,
blocksize = number_bytes,
capacity = number_kilobytes,

[density = density,
blocksize = number_bytes,

dumpvolume = volume_name,
file = file_name]
[stripe on stripe_device]
[at server_name]
[density = density,
blocksize = number_bytes,
capacity = number_kilobytes,
dumpvolume = volume_name,
file = file_name] ...]

dumpvolume = volume_name,
file = file_name]
[stripe on stripe_device]
[at server_name]
[density = density,
blocksize = number_bytes,
dumpvolume = volume_name,
file = file_name] ...]

Characteristics of All
Dump Devices

[with{
density = density,
blocksize = number_bytes,
capacity = number_kilobytes,

[with{
density = density,
blocksize = number_bytes,

dumpvolume = volume_name,
file = file_name,
[nodismount | dismount],
[nounload | unload],
retaindays = number_days,
[noinit | init],
[notify = {client | operator_console}] }]

dumpvolume = volume_name,
file = file_name,
[nodismount | dismount],
[nounload | unload],
[notify = {client | operator_console}] }]

Table 8-7: Specifying Tape Density, Blocksize, and Capacity

System Administration Guide 8-11

SYBASE SQL Server Release 10.0 Specifying Tape Density, Blocksize, and Capacity

➤ Note
Specify tape density only when using the init tape handling option. For more

information on this option, see the section ‘‘Reinitializing a Volume Before a

Dump’’ in this chapter.

Overriding the Default Blocksize

By default, the dump and load commands choose the “best”
blocksize for your operating system. Wherever possible, use these
defaults.

You can use the blocksize = number_bytes option to override the default
blocksize for a particular dump device. The blocksize must be at least
one database page (2048 bytes for most systems, 4096 for Stratus),
and must be an exact multiple of the database page size.

For OpenVMS systems, you can specify a blocksize only for dumps.
Use a blocksize less than or equal to 16384.

For UNIX systems, you can specify a blocksize on both dump and
load commands. When loading a dump, you must specify the same
blocksize that was used to make the dump.

Specifying Tape Capacity for Dump Commands

By default, OpenVMS systems write until they reach the physical
end-of-tape marker, then signal that a volume change is required. For
UNIX platforms that cannot reliably detect the end-of-tape marker,
you must indicate how many kilobytes can be dumped to a tape.

If you specify the physical pathname of the dump device, you must
include the capacity = number_kilobytes parameter in the dump
command. If you specify the logical dump device name, the Backup
Server uses the size parameter stored in the sysdevices system table
unless you override it with the capacity = number_kilobytes parameter.

The specified capacity must be at least five database pages (each
page requires 2048 bytes for most platforms, 4096 for Stratus). We
recommend that you specify a capacity that is slightly below the
rated capacity for your device.

8-12 Backing Up and Restoring User Databases

Specifying the Volume Name SYBASE SQL Server Release 10.0

Specifying the Volume Name

Use the with dumpvolume = volume_name option to specify the volume
name. The dump database and dump transaction commands write the
volume name to the SQL tape label. The load database and load
transaction commands check the label; if the wrong volume is loaded,
Backup Server generates an error message.

You can specify a volume name for each dump device. You can also
specify a volume name in the with clause for all devices. Volume
names specified for individual devices take precedence over those
specified in the with clause.

Backing Up a Database or Log Loading a Database or Log

dump {database | tran}
database_name
to stripe_device
[at server_name]
[density = density,
blocksize = number_bytes,
capacity = number_kilobytes,

load {database | tran} database_name
from stripe_device
[at server_name]
[density = density,
blocksize = number_bytes,

Volume name for single device dumpvolume = volume_name, dumpvolume = volume_name,

file = file_name]
[stripe on stripe_device
[at server_name]
[density = density,
blocksize = number_bytes,
capacity = number_kilobytes,
dumpvolume = volume_name,
file = file_name] ...]
[with{
density = density,
blocksize = number_bytes,
capacity = number_kilobytes,

file = file_name]
[stripe on stripe_device
[at server_name]
 [density = density,
 blocksize = number_bytes,
 dumpvolume = volume_name,
file = file_name]...]
[with {
density = density,
blocksize = number_bytes,

Volume name for all devices dumpvolume = volume_name, dumpvolume = volume_name,

file = file_name,
[nodismount | dismount],
[nounload | unload],
retaindays = number_days,
[noinit | init],
[notify = {client | operator_console}] }]

file = file_name,
[nodismount | dismount],
[nounload | unload],
[notify = {client | operator_console}] }]

Table 8-8: Specifying the Volume Name

System Administration Guide 8-13

SYBASE SQL Server Release 10.0 Identifying a Dump

Identifying a Dump

When you dump a database or transaction log, Backup Server creates
a default file name for the dump by concatenating the:

• Last seven characters of the database name

• Two-digit year number

• Three-digit day of the year (1 through 366)

• Number of seconds since midnight, in hexadecimal

You can override this default using the file = file_name option. The file
name cannot exceed 17 characters and must conform to the file
naming conventions for your operating system.

You can specify a file name for each dump device. You can also
specify a file name for all devices in the with clause. File names
specified for individual devices take precedence over those specified
in the with clause.

Backing Up a Database or Log Loading a Database or Log

dump {database | tran} database_name
to stripe_device
[at server_name]
[density = density,
blocksize = number_bytes,
capacity = number_kilobytes,
dumpvolume = volume_name,

load {database | tran} database_name
from stripe_device
[at server_name]
[density = density,
blocksize = number_bytes,
dumpvolume = volume_name,

File name for single device file = file_name] file = file_name]

[stripe on stripe_device
[at server_name]
[density = density,
blocksize = number_bytes,
capacity = number_kilobytes,
dumpvolume = volume_name,
file = file_name] ...]
[with{
density = density,
blocksize = number_bytes,
capacity = number_kilobytes,
dumpvolume = volume_name,

[stripe on stripe_device]
[at server_name]
[density = density,
blocksize = number_bytes,
dumpvolume = volume_name,
file = file_name] ...]
[with{
density = density,
blocksize = number_bytes,
dumpvolume = volume_name,

File name for all devices file = file_name, file = file_name,

[nodismount | dismount],
[nounload | unload],
retaindays = number_days,
[noinit | init],
[notify = {client | operator_console}] }]

[nodismount | dismount],
[nounload | unload],
[notify = {client | operator_console}] }]

Table 8-9: Specifying the File Name for a Dump

8-14 Backing Up and Restoring User Databases

Identifying a Dump SYBASE SQL Server Release 10.0

The following examples dump the transaction log for the publications
database without specifying a file name. The default file name,
cations930590E100, identifies the database and the date and time the
dump was made:

Figure 8-1: Default File Naming Convention for Database and Transaction Log Dumps

Backup Server sends the file name to the default message destination
or to the notify location for the dump command. Be sure to label each
backup tape with the volume name and file name before storing it.

When you load a database or transaction log, you can use the file =
file_name clause to specify which dump to load from a volume that
contains multiple dumps:

When loading the dump from a multi-file volume, you must specify
the correct file name:

On UNIX:

dump tran publications
to "/dev/nrmt3"

load tran publications
from "/dev/nrmt4"
with file = "cations930590E100"

On OpenVMS:

dump tran publications
to "MTA01"

load database mydb
from "MTA01:"
with file = "cations930590E100"

The following examples use a user-defined file naming convention.
The 15-character file name, mydb93jul201800, identifies the database
(mydb), the date (July 20, 1993), and time (18:00, or 6:00 pm) the dump
was made. The load command advances the tape to mydb93jul201800
before loading:

cations930590E100

last 7 characters
of database name

last 2
digits of
year

day of
year

number of seconds
since midnight

System Administration Guide 8-15

SYBASE SQL Server Release 10.0 Specifying Additional Dump Devices: the stripe on Clause

On UNIX:

dump database mydb
to "/dev/nrmt3"
with file = "mydb93jul201800"

load database mydb
from "/dev/nrmt4"
with file = "mydb93jul201800"

On OpenVMS:

dump database mydb
to "MTA01"
with file = "mydb93jul201800"

load database mydb
from "MTA01:"
with file = "mydb93jul201800"

For PC platform examples, refer to the System Administration Guide
Supplement.

Specifying Additional Dump Devices: the stripe on Clause

Dump striping allows you to use multiple dump devices for a single
dump or load command. Use a separate stripe on clause to specify the
name (and, if desired, the characteristics) of each device.

8-16 Backing Up and Restoring User Databases

Specifying Additional Dump Devices: the stripe on Clause SYBASE SQL Server Release 10.0

Each dump or load command can have up to 31 stripe on clauses (for
a maximum of 32 dump devices):

Dumping to Multiple Devices

The Backup Server divides the database into approximately equal
portions and sends each portion to a different device. Dumps are
made concurrently on all devices, reducing the time required to
dump an individual database or transaction log. Because each tape
stores just a portion of the database, it is less likely that new tapes
must be mounted on a particular device.

Loading from Multiple Devices

You can use up to 32 devices to load a database or transaction log.
Using multiple devices decreases both the time required for the load

Backing Up a Database or Log Loading a Database or Log

dump {database | tran} database_name
to stripe_device
[at server_name]
[density = density,
blocksize = number_bytes,
capacity = number_kilobytes,
dumpvolume = volume_name,
file = file_name]

load {database | tran} database_name
from stripe_device
[at server_name]
[density = density,
blocksize = number_bytes,
dumpvolume = volume_name,
file = file_name]

Characteristics of an
additional tape device
(one set per device; up
to 31 devices)

[stripe on stripe_device
[at server_name]
[density = density,
blocksize = number_bytes,
capacity = number_kilobytes,
dumpvolume = volume_name,
file = file_name] ...]

[stripe on stripe_device
[at server_name]
[density = density,
blocksize = number_bytes,
dumpvolume = volume_name,
file = file_name] ...]

[with{
density = density,
blocksize = number_bytes,
capacity = number_kilobytes,
dumpvolume = volume_name,
file = file_name,
[nodismount | dismount],
[nounload | unload],
retaindays = number_days,
[noinit | init],
[notify = {client | operator_console}] }]

[with{
density = density,
blocksize = number_bytes,
dumpvolume = volume_name,
file = file_name,
[nodismount | dismount],
[nounload | unload],
[notify = {client | operator_console}] }]

Table 8-10: Using More Than One Dump Device

System Administration Guide 8-17

SYBASE SQL Server Release 10.0 Specifying Additional Dump Devices: the stripe on Clause

and the likelihood of having to mount multiple tapes on a particular
device.

Using Fewer Devices to Load than to Dump

You can load a database or log even if one of your dump devices
becomes unavailable between the dump and load. Specify fewer
stripe clauses in the load command than you did in the dump
command.

➤ Note
When you dump and load across the network, you must use the same number

of drives for both operations.

The following examples use three devices to dump a database but
only two to load it:

On UNIX:

dump database pubs2 to “"dev/nrmt0"
stripe on "/dev/nrmt1"
stripe on "/dev/nrmt2"

load database pubs2 from "/dev/nrmt0"
stripe on "/dev/nrmt1"

On OpenVMS:

dump database pubs2 to "MTA0:"
stripe on “MTA1:”
stripe on “MTA2:”

load database pubs2 from "MTA0:"
stripe on "MTA1:"

For PC platform examples, refer to the System Administration Guide
Supplement.

After the first two tapes are loaded, a message notifies the operator to
load the third.

Specifying the Characteristics of Individual Devices

Use a separate at server_name clause for each stripe device attached to
a remote Backup Server. If you do not specify a remote Backup
Server name, the local Backup Server looks for the dump device on
the local machine. If necessary, you can also specify separate tape

8-18 Backing Up and Restoring User Databases

Tape Handling Options SYBASE SQL Server Release 10.0

device characteristics (density, blocksize, capacity, dumpvolume, and file) for
individual stripe devices.

The following examples use three dump devices, each attached to the
remote Backup Server REMOTE_BKP_SERVER:

On UNIX:

dump database pubs2
to "/dev/nrmt0" at REMOTE_BKP_SERVER
stripe on "/dev/nrmt1" at REMOTE_BKP_SERVER
stripe on "/dev/nrmt2" at REMOTE_BKP_SERVER

On OpenVMS:

dump database pubs2
to "MTA0:" at REMOTE_BKP_SERVER
stripe on "MTA1:" at REMOTE_BKP_SERVER
stripe on "MTA2:" at REMOTE_BKP_SERVER

For PC platform examples, refer to the System Administration Guide
Supplement.

Tape Handling Options

The tape handling options, which appear in the with clause, apply to
all devices used for the dump or load. They include:

• nodismount to keep the tape available for additional dumps or
loads

• unload to rewind and unload the tape following the dump or load

• retaindays to protect files from being overwritten

• init to reinitialize the tape rather than appending the dump files
after the last end-of-tape mark

System Administration Guide 8-19

SYBASE SQL Server Release 10.0 Tape Handling Options

Specifying Whether to Dismount the Tape

On platforms that support logical dismounts, such as OpenVMS,
tapes are dismounted when a dump or load completes. Use the
nodismount option to keep the tape mounted and available for
additional dumps or loads. This command has no effect on UNIX or
PC systems.

Rewinding the Tape

By default, both dump and load commands use the nounload tape
handling option.

Backing Up a Database or Log Loading a Database or Log

dump {database | tran} database_name
to stripe_device
[at server_name]
[density = density,
blocksize = number_bytes,
capacity = number_kilobytes,
dumpvolume = volume_name,
file = file_name]
[stripe on stripe_device
[at server_name]
[density = density,
blocksize = number_bytes,
capacity = number_kilobytes,

dumpvolume = volume_name,
file = file_name] ...]
[with{
density = density,
blocksize = number_bytes,
capacity = number_kilobytes,
dumpvolume = volume_name,
file = file_name,

load {database | tran} database_name
from stripe_device
[at server_name]
[density = density,
blocksize = number_bytes
dumpvolume = volume_name
file = file_name]
[stripe on stripe_device
[at server_name]
[density = density,
blocksize = number_bytes,
dumpvolume = volume_name,
file = file_name] ...]
[with{
density = density,
blocksize = number_bytes,
dumpvolume = volume_name,
file = file_name,

Tape Handling Options [nodismount | dismount],
[nounload | unload],
retaindays = number_days,
[noinit | init],

nodismount | dismount],
[nounload | unload],

[notify = {client | operator_console}] }] [notify = {client | operator_console}] }]

Table 8-11: Tape Handling Options

8-20 Backing Up and Restoring User Databases

Tape Handling Options SYBASE SQL Server Release 10.0

On UNIX systems, this prevents the tape from rewinding after the
dump or load completes. This allows you to dump additional
databases or logs to the same volume, or to load additional databases
or logs from that volume. Use the unload option for the last dump on
the tape, to rewind and unload the tape when the command
completes.

On OpenVMS systems, tapes are always rewound after a dump or
load completes. Use the unload option to unthread the tape and eject it
from the drive. (This action is equivalent to the /UNLOAD qualifier
for the OpenVMS DISMOUNT command.)

Protecting Dump Files from Being Overwritten

The tape retention configuration variable specifies the number of days
that must elapse between the creation of a tape file and the time at
which you can overwrite it with another dump. This server-wide
variable, which is set with the sp_configure system procedure, applies
to all dumps requested from a single SQL Server.

Use the retaindays = number_days option to override the tape retention
variable for a single database or transaction log dump. The number
of days must be a positive integer, or zero if the tape can be
overwritten immediately.

➤ Note
tape retention and retaindays are meaningful only for disk, quarter-inch cartridge,

and single-file media. On multi-file media, the Backup Server only checks the

expiration date of the first file.

Reinitializing a Volume Before a Dump

By default, each dump is appended to the tape following the last
end-of-tape mark. Tape volumes are not reinitialized. This allows
you to dump multiple databases to a single volume. (New dumps
can be appended only to the last volume of a multi-volume dump.)

Use the init option to overwrite any existing contents of the tape. If
you specify init, the Backup Server reinitializes the tape without
checking for:

• ANSI access restrictions

• Files that have not yet expired

System Administration Guide 8-21

SYBASE SQL Server Release 10.0 Tape Handling Options

• Non-Sybase data (“foreign” tapes on OpenVMS)

The default, noinit, checks for all three conditions and sends a volume
change prompt if any are present.

The following examples initialize two devices, overwriting the
existing contents with the new transaction log dumps:

On UNIX:

dump transaction pubs2
to "/dev/nrmt0"
stripe on "/dev/nrmt1"
with init

On OpenVMS:

dump transaction pubs2
to "MTA0:"
stripe on "MTA1:"
with init

For PC platform examples, refer to the System Administration Guide
Supplement.

Dumping Multiple Databases to a Single Volume

Follow these steps to dump multiple databases to the same tape
volume:

1. Use the init option for the first database. This overwrites any
existing dumps and places the first dump at the beginning of the
tape.

2. Use the default (noinit and nounload) option for subsequent
databases. This places them one after the other on the tape.

3. Use the unload option for the last database on the tape. This
rewinds and unloads the tape after the last database is dumped.

8-22 Backing Up and Restoring User Databases

Overriding the Default Message Destination SYBASE SQL Server Release 10.0

Figure 8-2 illustrates which options to use to dump three databases
to a single tape volume:

Figure 8-2: Dumping Several Databases to the Same Volume

Overriding the Default Message Destination

Backup Server messages inform the operator when to change tape
volumes and how the dump or load is progressing. The default
destination for these messages depends on whether the operating
system offers an operator terminal feature. The notify option, which
appears in the with clause, allows you to override the default message
destination for a dump or load.

On operating systems, such as OpenVMS, that offer an operator
terminal feature, volume change messages are always sent to an
operator terminal on the machine where the Backup Server is
running. (OpenVMS routes messages to terminals that are enabled
for TAPES, DISKS, or CENTRAL.) Use notify = client to route other Backup
Server messages to the terminal session where the dump or load
request initiated.

On systems such as UNIX that do not offer an operator terminal
feature, messages are sent to the client that initiated the dump or load
request. Use notify = operator_console to route messages to the terminal
where the remote Backup Server was started.

dump database mydb
to /dev/nrmt4
with init

dump database yourdb
to /dev/nrmt4

dump database pubs2
to /dev/nrmt4
with unload

System Administration Guide 8-23

SYBASE SQL Server Release 10.0 Overriding the Default Message Destination

Backing Up a Database or Log Loading a Database or Log

dump {database | tran} database_name
to stripe_device
[at server_name]
[density = density,
blocksize = number_bytes,
capacity = number_kilobytes,
dumpvolume = volume_name,
file = file_name]
[stripe on stripe_device
[at server_name]
[density = density,
blocksize = number_bytes,
capacity = number_kilobytes,
dumpvolume = volume_name,
file = file_name] ...]
[with{
density = density,
blocksize = number_bytes,
capacity = number_kilobytes,
dumpvolume = volume_name,
file = file_name,
[nodismount | dismount],
[nounload | unload],
retaindays = number_days,
[noinit | init],

load {database | tran} database_name
from stripe_device
[at server_name]
[density = density,
blocksize = number_bytes
dumpvolume = volume_name
file = file_name]
[stripe on stripe_device
[at server_name]
[density = density,
blocksize = number_bytes,
dumpvolume = volume_name,
file = file_name] ...]
[with{
density = density,
blocksize = number_bytes,
dumpvolume = volume_name,
file = file_name,
[nodismount | dismount],
[nounload | unload],

Message destination [notify = {client | operator_console}] }] [notify = {client | operator_console}] }]

Table 8-12: Overriding the Default Message Destination

8-24 Backing Up and Restoring User Databases

Getting Information About Dump Files SYBASE SQL Server Release 10.0

Getting Information About Dump Files

If you are unsure of the contents of a tape, use the with headeronly or
with listonly option of the load commands to request a report with this
information.

➤ Note
Neither with headeronly nor with listonly loads the dump files after displaying the

report.

Requesting Dump Header Information

with headeronly returns the header information for a single file. If you
do not specify a file name, with headeronly returns information about
the first file on the tape.

Listing Information About a Dump

load {database | tran}
database_name
from stripe_device
[at server_name]
[density = density,
blocksize = number_bytes
dumpvolume = volume_name
file = file_name]
[stripe on stripe_device
[at server_name]
[density = density,
blocksize = number_bytes,
dumpvolume = volume_name,
file = file_name] ...]
[with{
density = density,
blocksize = number_bytes,
dumpvolume = volume_name,
file = file_name,
[nodismount | dismount],
[nounload | unload],

List header information
List files on tape

[headeronly [,file = filename]] ,
[listonly [=full]] ,

[notify = {client | operator_console}] }]

Table 8-13: Listing Dump Headers or File Names

System Administration Guide 8-25

SYBASE SQL Server Release 10.0 Getting Information About Dump Files

The header indicates whether the dump is for a database or
transaction log, the database ID, the file name, and the date the dump
was made. For database dumps, it also shows the character set, sort
order, page count and next object ID. For transaction log dumps, it
shows the checkpoint location in the log, the location of the oldest
begin transaction record and the old and new sequence dates.

The following examples return header information for the first file on
the tape and then for the file mydb9229510945:

On UNIX:

load database mydb
from "/dev/nrmt4"
with headeronly

load database mydb
from "/dev/nrmt4"
with headeronly, file = "mydb9229510945"

On OpenVMS:

load database mydb
from "MTA01:"
with headeronly

load database mydb
from "MTA01:"
with headeronly, file = "mydb9229510945"

For PC platform examples, refer to the System Administration Guide
Supplement.

Here is sample output from headeronly:

Backup Server session id is: 44. Use this value when executing
the ‘sp_volchanged’ system stored procedure after fulfilling any
volume change request from the Backup Server.

Backup Server: 4.28.1.1: Dumpfile name ‘mydb9232610BC8 ‘ section
number 0001 mounted on device ‘backup/SQL_SERVER/mydb.db.dump’

This is a database dump of database ID 5 from Nov 21 1992 7:02PM.

Database contains 1536 pages; checkpoint RID=(Rid pageid =
0x404; row num = 0xa); next object ID=3031; sort order ID=50,
status=0; charset ID=1.

Determining the Database, Device, File Name, and Date

with listonly returns a brief description of each dump file on a volume.
It includes the name of the database, the device used to make the
dump, the file name, the date and time the dump was made, and the

8-26 Backing Up and Restoring User Databases

Getting Information About Dump Files SYBASE SQL Server Release 10.0

date and time it can be overwritten. with listonly = full provides greater
detail. Both reports are sorted by SQL tape label.

Following is sample output of a load database command with listonly:

Backup Server: 4.36.1.1: Device ‘/dev/nrst0’:
File name:‘model9320715138 ‘
Create date & time: Monday, Jul 26, 1993, 23:58:48
Expiration date & time: Monday, Jul 26, 1993, 00:00:00
Database name:‘model ‘

and sample output from with listonly = full:

Backup Server: 4.37.1.1: Device ‘/dev/nrst0’:
Label id:‘HDR1’
File name:‘model9320715138 ‘
Stripe count:0001
Device typecount:01

Archive volume number:0001
Stripe position:0000
Generation number:0001
Generation version:00
Create date & time:Monday, Jul 26, 1993, 23:58:48
Expiration date & time:Monday, Jul 26, 1993, 00:00:00
Access code:‘ ‘
File block count:000000
Sybase id string:
‘Sybase ‘Reserved:‘ ‘

Backup Server: 4.38.1.1: Device ‘/dev/nrst0’:
Label id:‘HDR2’
Record format:‘F’
Max. bytes/block:55296
Record length:02048
Backup format version:01
Reserved:‘ ‘
Database name:‘model ‘
Buffer offset length:00
Reserved:‘ ‘

After listing all files on a volume, the Backup Server sends a volume
change request:

System Administration Guide 8-27

SYBASE SQL Server Release 10.0 Copying the Log After a Device Failure

Backup Server: 6.30.1.2: Device /dev/nrst0: Volume cataloguing
complete.
Backup Server: 6.51.1.1: OPERATOR: Mount the next volume to
search.
Backup Server: 6.78.1.1: EXECUTE sp_volchanged

@session_id = 5,
@devname = ‘/dev/nrst0’,
@action = { ‘PROCEED’ | ‘RETRY’ | ‘ABORT’ },
@fname = ‘

The operator can mount another volume and signal the volume
change with sp_volchanged, or use sp_volchanged to terminate the search
operation for all stripe devices.

Copying the Log After a Device Failure

Normally, the dump transaction command truncates the inactive
portion of the log after copying it. Use the with no_truncate option to
copy the log without truncating it.

The no_truncate option allows you to copy the transaction log after
failure of the device that holds your data. It uses pointers in the
sysdatabases and sysindexes system tables to determine the physical
location of the transaction log. It can be used only if your transaction
log is on a separate segment and your master database is accessible.

◆ WARNING!
Use no_truncate only if media failure makes your data segment
inaccessible. Never use no_truncate on a database that is in use.

After copying the log with no_truncate, you must follow the steps
described in it was made. These steps are described in the section
‘‘Volume Change Prompts for Loads’’ in this chapter.

8-28 Backing Up and Restoring User Databases

Truncating a Log That Is Not on a Separate Segment SYBASE SQL Server Release 10.0

You can use no_truncate with striped dumps, tape initialization, and
remote Backup Servers. Here is an example:

dump transaction mydb
to "/dev/nrmt0" at REMOTE_BKP_SERVER
with init, no_truncate,
notify = "operator_console"

Truncating a Log That Is Not on a Separate Segment

If a database does not have a separate log segment, you cannot use
dump transaction to copy the log and then truncate it. For these
databases, you must:

1. Use the special with truncate_only option of dump transaction to
truncate the log so that it does not run out of space.

2. Use dump database to copy the entire database, including the log.

dump transaction database_name
to stripe_device
[at server_name]
[density = density,
blocksize = number_bytes,
capacity = number_kilobytes,
dumpvolume = volume_name,
file = file_name]
[stripe on stripe_device
[at server_name]
[density = density,
blocksize = number_bytes,
capacity = number_kilobytes,
dumpvolume = volume_name,
file = file_name] ...]
[with{
density = density,
blocksize = number_bytes,
capacity = number_kilobytes,
dumpvolume = volume_name,
file = file_name,
[nodismount | dismount],
[nounload | unload],
retaindays = number_days,
[noinit | init],

Do not truncate log no_truncate,

[notify = {client | operator_console}] }]

Table 8-14: Copying the Log After a Device Failure

System Administration Guide 8-29

SYBASE SQL Server Release 10.0 Truncating the Log In Early Development Environments

Because it copies no data, the with truncate_only option requires only the
name of the database:

dump transaction database_name with truncate_only

The following example dumps the database mydb, which does not
have a separate log segment, then truncates the log:

dump database mydb to mydevice

dump transaction mydb with truncate_only

Truncating the Log In Early Development Environments

In early development environments, the transaction log is quickly
filled by the process of creating, dropping and recreating stored
procedures and triggers and checking integrity constraints.
Recovery of data may be less important than ensuring that there is
adequate space on database devices.

The with truncate_only option of dump transaction is often useful in these
environments. It allows you to truncate the transaction log without
making a backup copy:

dump transaction database_name with truncate_only

After you run dump transaction with truncate_only, SQL Server requires
you dump the database before you can run a routine log dump.

Truncating a Log That Has No Free Space

When the log is very full, you may not be able to use your usual
method to dump the transaction log. If you have tried dump transaction
or dump transaction with truncate_only and the command fails because of
insufficient log space, use the special with no_log option of dump
transaction:

dump transaction database_name with no_log

This special option truncates the log without logging the dump
transaction event. Because it copies no data, it requires only the name
of the database.

◆ WARNING!
Use dump transaction with no_log only as a last resort.

8-30 Backing Up and Restoring User Databases

Responding to Volume Change Requests SYBASE SQL Server Release 10.0

Dangers of Using with truncate_only and with no_log

with truncate_only and with no_log allow you to truncate a log that has
become disastrously short of free space. Neither option provides a
means to recover your databases.

After running dump transaction with truncate_only or with no_log, you have
no way to recover transactions that have committed since the last
routine dump.

◆ WARNING!
Run dump database at the earliest opportunity to ensure that your data can
be recovered.

The following example truncates the transaction log for mydb and
then dumps the database:

dump transaction mydb
with no_log

dump database mydb

Providing Enough Log Space

Every use of dump transaction... with no_log is considered an error, and is
recorded in the server’s error log. If you have created your databases
with separate log segments, written a last-chance threshold
procedure that dumps your transaction log often enough, and
allocated enough space to your log and database, you should not
have to use this option.

Responding to Volume Change Requests

On UNIX and PC systems, use the sp_volchanged system procedure to
notify the Backup Server when the correct volumes have been
mounted. On OpenVMS systems, use the REPLY command.

To use sp_volchanged, log into any SQL Server that can communicate
with both the Backup Server that issued the volume change request
and the SQL Server that initiated the dump or load.

System Administration Guide 8-31

SYBASE SQL Server Release 10.0 Responding to Volume Change Requests

sp_volchanged Syntax

Use the following syntax for sp_volchanged:

sp_volchanged session_id, device_name , action
[,filename [, volume_name]]

• Use the session_id and device_name parameters specified in the
volume change request.

• The action specifies whether to abort, proceed with, or retry the
dump or load.

• The filename specifies which file to load. If you do not specify a file
name sp_volchanged, the Backup Server loads the file = filename
parameter of the load command. If neither sp_volchanged nor the
load command specifies which file to load, the Backup Server
loads the first file on the tape.

• The Backup Server writes the volume_name in the ANSI tape label
when overwriting an existing dump, dumping to a brand new
tape, or dumping to a tape whose contents are not recognizable.
During loads, the Backup Server uses the volume_name to confirm
that the correct tape has been mounted. If you do not specify a
volume_name with sp_volchanged, the Backup Server uses the
volume name specified in the dump or load command. If neither
sp_volchanged nor the command specifies a volume name, the
Backup Server does not check this field in the ANSI tape label.

Volume Change Prompts for Dumps

This section describes the volume change prompts that occur while
dumping a database or transaction log. For each prompt, it indicates
the possible operator actions and the appropriate sp_volchanged
response.

• Mount the next volume to search.

When appending a dump to an existing volume, the Backup
Server issues this message if it cannot find the end-of-file mark.

The operator can By replying

Abort the dump sp_volchanged session_id, device_name, abort

Mount a new volume
and proceed with the
dump

sp_volchanged session_id, device_name, proceed
[, file_name [, volume_name]]

8-32 Backing Up and Restoring User Databases

Responding to Volume Change Requests SYBASE SQL Server Release 10.0

• Mount the next volume to write.

The Backup Server issues this message when it reaches the end
of the tape. This occurs when it detects the end-of-tape mark, or
dumps the number of kilobytes specified by the capacity
parameter of the dump command, or dumps the high value
specified for the device in the sysdevices system table.

• Volume on device device_name has restricted access
(code access_code).

Dumps that specify the init option overwrite any existing
contents of the tape. Backup Server issues this message if you try
to dump to a tape with ANSI access restrictions without speci-
fying the init option.

• Volume on device device_name is expired and will
be overwritten.

Dumps that specify the init option overwrite any existing
contents of the tape. During dumps to single-file media, Backup
Server issues this message if you have not specified the init
option and the tape contains a dump whose expiration date has
passed.

The operator can By replying

Abort the dump sp_volchanged session_id, device_name, abort

Mount the next
volume and proceed
with the dump

sp_volchanged session_id, device_name, proceed
[, file_name [, volume_name]]

The operator can By replying

Abort the dump sp_volchanged session_id, device_name, abort

Mount another volume
and retry the dump

sp_volchanged session_id, device_name, retry
[, file_name [, volume_name]]

Proceed with the
dump, overwriting
any existing contents

sp_volchanged session_id, device_name, proceed
[, file_name [, volume_name]]

The operator can By replying

Abort the dump sp_volchanged session_id, device_name, abort

System Administration Guide 8-33

SYBASE SQL Server Release 10.0 Responding to Volume Change Requests

• Volume to be overwritten on ' device_name ' has not
expired: creation date on this volume is
creation_date , expiration date is expiration_date .

On single-file media, the Backup Server checks the expiration
date of any existing dump unless you specify the init option. The
Backup Server issues this message if the dump has not yet
expired.

• Volume to be overwritten on ‘ device_name ’ has
unrecognized label data.

Dumps that specify the init option overwrite any existing
contents of the tape. Backup Server issues this message if you try
to dump to a new tape or a tape with non-Sybase data without
specifying the init option.

Mount another volume
and retry the dump

sp_volchanged session_id, device_name, retry
[, file_name [, volume_name]]

Proceed with the
dump, overwriting
any existing contents

sp_volchanged session_id, device_name, proceed
[, file_name [, volume_name]]

The operator can By replying

Abort the dump sp_volchanged session_id, device_name, abort

Mount another volume
and retry the dump

sp_volchanged session_id, device_name, retry
[, file_name [, volume_name]]

Proceed with the
dump, overwriting
any existing contents

sp_volchanged session_id, device_name, proceed
[, file_name [, volume_name]]

The operator can By replying

Abort the dump sp_volchanged session_id, device_name, abort

Mount another volume
and retry the dump

sp_volchanged session_id, device_name, retry
[, file_name [, volume_name]]

Proceed with the
dump, overwriting
any existing contents

sp_volchanged session_id, device_name, proceed
[, file_name [, volume_name]]

The operator can By replying

8-34 Backing Up and Restoring User Databases

Responding to Volume Change Requests SYBASE SQL Server Release 10.0

Volume Change Prompts for Loads

Following are the volume change prompts and possible operator
actions during loads:

• Dumpfile ' file_name ' section volume_name found
instead of ' file_name ' section volume_name .

The Backup Server issues this message if it cannot find the
specified file on a single-file medium.

• Mount the next volume to read.

The Backup Server issues this message when it is ready to read
the next section of the dump file from a multi-volume dump.

• Mount the next volume to search.

The Backup Server issues this message if it cannot find the
specified file on multi-file medium.

The operator can By replying

Abort the load sp_volchanged session_id, device_name, abort

Mount another volume
and try to load it

sp_volchanged session_id, device_name, retry
[, file_name [, volume_name]]

Load the file on the
currently mounted
volume, even though it
is not the specified file
(not recommended)

sp_volchanged session_id, device_name, proceed
[, file_name [, volume_name]]

The operator can By replying

Abort the load sp_volchanged session_id, device_name, abort

Mount the next
volume and proceed
with the load

sp_volchanged session_id, device_name, proceed
[, file_name [, volume_name]]

The operator can By replying

Abort the load sp_volchanged session_id, device_name, abort

Mount another volume
and proceed with the
load

sp_volchanged session_id, device_name, proceed
[, file_name [, volume_name]]

System Administration Guide 8-35

SYBASE SQL Server Release 10.0 Recovering a Database: Step-by-Step Instructions

Recovering a Database: Step-by-Step Instructions

The symptoms of media failure are as variable as the causes. If only a
single block on the disk is bad, your database may appear to function
perfectly for some time after the corruption appears, unless you’re
running dbcc commands frequently. If an entire disk or disk
controller is bad, you will not be able to use a database. SQL Server
marks it as suspect and displays a warning message. If the disk
storing the master database fails, users will not be able to log into the
server, and users already logged in will not be able to perform any
actions that access the system tables in master.

This section describes what to do when a database device fails. The
recommended procedure consists of the following steps:

1. Get a current log dump of every database on the device.

2. Examine the space usage of every database on the device.

3. Once you have gathered this information for all databases on the
device, drop each database.

4. Drop the failed device.

5. Initialize new devices.

6. Recreate the databases, one at a time.

7. Lock users out of each database.

8. Load the most recent database dump into each database.

9. Apply each transaction log dump in the order it was created.

These steps are described in greater detail in the following sections.

Getting a Current Dump of the Transaction Log

Use dump transaction with no_truncate to get a current transaction log
dump for each database on the failed device. For example, to get a
current transaction log dump of mydb:

dump transaction mydb
to "/dev/nrmt0" at REMOTE_BKP_SERVER
with init, no_truncate,
notify = "operator_console"

8-36 Backing Up and Restoring User Databases

Recovering a Database: Step-by-Step Instructions SYBASE SQL Server Release 10.0

Examining the Device Allocations

The following steps are recommended, but not required, to
determine which devices your database uses, how much space is
allocated on each device, and whether the space is used for data, log,
or both. You can use this information when recreating your
databases, to ensure that your log, data, and indexes reside on
separate devices.

1. In master, use the following query to examine the device
allocations and uses for the damaged database:

select segmap, size from sysusages
 where dbid = db_id(" database_name ")

2. Examine the output of the query. Each row with a segmap of 3
represents a data allocation; each row with a segmap of 4 in the
represents a log allocation. (Higher values indicate user-defined
segments; treat these as data allocations.) The size column
indicates the number of 2K blocks of data. To find the number of
megabytes, divide by 512 on most systems, or by 256 on Stratus.
Note the order, use and size of each disk piece. For example, this
output:

segmap size
------- --------
 3 10240
 3 5120
 4 5120
 3 1024
 4 2048

translates into these sizes and uses, in megabytes:

Device
Allocation Megabytes

Data 20
Data 10
Log 10
Data 2
Log 4

Table 8-15: Sample Device Allocation

System Administration Guide 8-37

SYBASE SQL Server Release 10.0 Recovering a Database: Step-by-Step Instructions

➤ Note
If the segmap column contains 7s, your data and log are on the same device,

and you can only recover up to the point of the most recent database dump. Do
not use the log on option to create database. Just be sure that you allocate as

much (or more) space than the total reported from sysusages.

3. Run sp_helpdb database_name for the database. This query lists the
devices on which the data and logs are located:

name db_size owner dbid created
------- ------- ------ ---- -----------
mydb 46.0 MB sa 15 Apr 9 1991

status device_fragments size usage
-------------- ---------------- ------ ------------
no options set datadev1 20 MB data only

datadev2 10 MB data only
datadev3 2 MB data only
logdev1 10 MB log only
logdev1 4 MB log only

Dropping the Databases

Once you have performed these steps for all databases on the failed
device, use the drop database command to drop each database.

➤ Note
If tables in other databases contain references to any tables in the database

you are trying to drop, you must remove the referential integrity constraints with

alter table before you can drop the database.

If the system reports errors because the database is damaged when
you issue the drop database command, use the dropdb option of the dbcc
dbrepair command:

dbcc dbrepair (mydb, dropdb)

See the Troubleshooting Guide for more information on using dbcc
dbrepair.

8-38 Backing Up and Restoring User Databases

Recovering a Database: Step-by-Step Instructions SYBASE SQL Server Release 10.0

Dropping the Failed Devices

After you have dropped each database, use sp_dropdevice to drop the
failed device. See Volume 2 of the SQL Server Reference Manual for
information on this system procedure.

Initializing New Devices

Use disk init to initialize the needed new database devices. See
Chapter 3, ‘‘Managing Physical Resources’’ for full information.

Recreating the Databases

Use the following steps to recreate each database using the segment
information you collected earlier.

➤ Note
If you chose not to gather information about segment usage, use create database
for load to create a new database at least as large as the original.

1. Use the create database command with the for load option.
Duplicate all segment mappings and sizes for each row of your
database from the sysusages table, up to and including the first
log device. Be sure to use the order of the rows as they appear in
sysusages. (The results of sp_helpdb are in alphabetical order by
device name, not in order of allocation.) For example, to recreate
the mydb database:

create database mydb
on datadev1 = 20,

 datadev2 = 10
log on logdev1 = 10
for load

2. Use the alter database command with the for load option to recreate
the remaining entries. In this example, to allocate more data
space on datadev3, the command is:

alter database on datadev3 = 2 for load

To re-create the final log allocation on logdev1, use this command:

alter database mydb log on logdev1 = 4 for load

System Administration Guide 8-39

SYBASE SQL Server Release 10.0 Recovering a Database: Step-by-Step Instructions

Locking the Databases

If users perform logged transactions between loading the database
and the first log dump, or between the loading of two transaction log
dumps, the load fails. Lock each database before you load it to ensure
that users do not make changes.

Use sp_dboption to set the no chkpt on recovery, dbo use only, and read only
options to TRUE. Do not reset these options until the last transaction
log has been loaded.

➤ Note
create database... for load temporarily locks users out of the newly created

database, but this protection is removed once load database completes.

Loading the Database

Reload the database using load database. If the original database stored
objects on user-defined segments (sysusages reports a segmap > 4) and
your new segment allocations do not match those in the dumped
database, SQL Server remaps these segments as needed. This
remapping may mix log and data on the same physical device,
making recovery of the current log impossible.

If an additional failure occurs while a database is being loaded,
SQL Server does not recover the partially loaded database, and
notifies the user. You must restart the database load by repeating the
load command.

Loading the Transaction Logs

Use load transaction to apply transaction log backups in the same
sequence in which they were made. Load the most current dump
last.

 SQL Server checks the timestamps on each dumped database and
transaction log. If the dumps are loaded in the wrong order, or if user
transactions have modified the transaction log between loads, the
load fails.

Once you have brought a database up to date, use dbcc commands to
check its consistency.

8-40 Backing Up and Restoring User Databases

Recovering a Database: Step-by-Step Instructions SYBASE SQL Server Release 10.0

Unlocking the Databases

After you have applied all transaction log dumps to a database,
unlock it so that users can access it. Use sp_dboption to reset the no chkpt
on recovery, dbo use only and read only options to FALSE.

System Administration Guide 9-1

9. Backing Up and Restoring the
System Databases

Introdutio.n

This chapter is part of a three-chapter unit on backup and recovery. It
explains how to restore the master, model and sybsystemprocs
databases.

Depending on the database involved and the problems that you have
on your system, recovery may include:

• Using load database to load backups of these databases.

• Using buildmaster, installmaster and installmodel to restore the initial
state of these databases.

• A combination of both.

Symptoms of a Damaged master Database

A damaged master database can be caused by a media failure in the
area on which master is stored, or by internal corruption in the
database. A damaged master database makes itself known in one or
more of these ways:

• SQL Server cannot start.

• There are frequent or debilitating segmentation faults or
input/output errors.

• dbcc (the database consistency checker) reports damage during a
regularly-scheduled check of your databases.

For more information about See

Backup and recovery issues to address
before production

Chapter 7, ‘‘Developing a Backup
and Recovery Plan’’

dump, load, and sp_volchanged syntax Chapter 8, ‘‘Backing Up and
Restoring User Databases’’

Using thresholds to automate backups Chapter 10, ‘‘Managing Free
Space with Thresholds’’

Table 9-1: Further Information About Backup and Recovery

9

9-2 Backing Up and Restoring the System Databases

Avoiding Volume Changes During Backup and Recovery SYBASE SQL Server Release 10.0

Avoiding Volume Changes During Backup and Recovery

When you dump the master database, be sure that the entire dump
fits on a single volume, unless you have more than one SQL Server
able to communicate with your Backup Server. You must start SQL
Server in single-user mode before loading the master database. This
does not allow a separate user connection to respond to Backup
Server’s volume change messages during the load. Since master is
usually small in size, placing its backup on a single tape volume is
typically not a problem.

Recovering the master Database

This section describes the step to recover the master database in two
situations:

• When the database is corrupt but the master device has not been
damaged. This process does not affect the model database.
Recovering model is covered later in this chapter.

• When the master device is damaged, and you must restore the
entire device. You can also use these procedures to move your
master database to a larger master device.

Special procedures are needed because of the central, controlling
nature of the master database and the master device. Tables in master
configure and control all of SQL Server’s functions, databases, and
data devices. The recovery process:

• Restores master to the default state on a newly-installed server.

• Restores master to its condition at the time of your last backup.

• Performs very special procedures to recover changes to devices
and databases since the last backup.

During the early stages of recovering the master database, you will
not be able to use the system stored procedures.

If you have user databases that you have not backed up on your
master device, you may not be able to use these procedures to recover.
You should call Technical Support for assistance.

System Administration Guide 9-3

SYBASE SQL Server Release 10.0 Recovering the master Database

Summary of Recovery Procedure

System Administrators must use the following steps to restore a
damaged master database. Each of these steps is discussed in more
detail in the following pages.

1. Make hard copies of vital system tables needed to restore disks,
databases and logins.

2. If there are other databases on the master device, and they are
accessible, back them up with dump database.

3. Use buildmaster to build a new master database or master device.

4. Restart SQL Server in single-user mode with the startserver
command.

5. If your master database is larger than 3MB, re-create its
allocations in sysusages exactly. The size of master might be larger
because of alter database commands, or because earlier upgrades
of SQL Server required a larger master database.

6. If your Backup Server’s network name (the name in the
interfaces file) is not SYB_BACKUP, change the network name in
sysservers.

7. Check to see that your Backup Server is running.

8. Use load database to load the most recent database dump of master.
SQL Server stops automatically after successfully loading master.

9. Restart SQL Server in single-user mode again with startserver.

10. If you have added database devices since the last dump of
master, issue the disk reinit command to rebuild sysdevices.

11. If you have run disk reinit, or if create database or alter database has
been used since the last dump, make hard copies of sysusages
and sysdatabases and then issue the disk refit command to rebuild
these system tables.

12. Check for consistency: compare your hard copy of sysusages and
sysdatabases with the new on-line version, run dbcc checkalloc on
each database, and examine important tables in each database.

13. If you restored the entire master device, restore the model
database.

14. Reload any affected user databases.

15. Check syslogins if you have added new logins since the last
backup of master.

9-4 Backing Up and Restoring the System Databases

Recovering the master Database SYBASE SQL Server Release 10.0

16. If everything is correct, stop the server and use startserver to
restart SQL Server for multi-user use.

17. Dump the master database.

The following sections describe these steps in greater detail.

Saving Copies of System Tables

If you can log into your server, save copies of the following system
tables to a disk file: sysdatabases, sysdevices, sysusages, sysloginroles and
syslogins. You can use these to guarantee that your system has been
fully restored at the completion of this process.

You can use isql (use select * from tablename) or bcp (copy the tables in
character mode) to make copies to disk files. If possible, make a copy
of sysusages ordered by vstart:

select * from sysusages order by vstart

For more information on the isql and bcp programs, see the SQL Server
Utility Programs manual for your operating system.

Dumping User Databases on the Master Device

If there are user databases on the master device, and they are
accessible, use dump database to dump them.

Building a New master Database

If you are rebuilding only your master database, you use a special
option to buildmaster that only affects master. If you are rebuilding the
entire master device, you use buildmaster without this option.

Rebuilding Only the master Database

Run buildmaster -m (UNIX and PCs) or buildmaster /master (OpenVMS) to
replace the damaged master database with a copy of a “generic”
master database. Give the full name for your master device, and the
full size of the device.

System Administration Guide 9-5

SYBASE SQL Server Release 10.0 Recovering the master Database

➤ Note
You must give buildmaster a size at least as large, or larger, then the size

originally used to configure SQL Server. If you recorded this information in your

SQL Server Installation Guide, use that size. If the size you provide is too small,

you will get error messages when you try to load your databases.

This example rebuilds the master database on a 17MB (8704 2-K
pages) master device:

On UNIX platforms:

buildmaster -d /dev/rsd1f -s8704 -m

On OpenVMS:

buildmaster
/disk=dua0:[devices.master]d_master.dat/size=8704
/master

For PC platform examples, refer to the System Administration Guide
Supplement.

After you run buildmaster, the password for the default “sa” account
reverts to NULL.

For details on the buildmaster utility, see the SQL Server Utility
Programs manual for your operating system.

Rebuilding the Entire Master Device

If you are rebuilding a damaged master device, or moving your
master database to another device, run buildmaster without using the
“master” option.

Starting SQL Server in Master-Recover Mode

Start SQL Server in master-recover mode with the -m (UNIX and PCs)
or /masterrecover (OpenVMS) options. See the SQL Server Utility
Programs manual for your operating system for complete syntax.

On UNIX platforms:

startserver -f RUN_ server_name -m

On OpenVMS:

startserver /server = server_name /masterrecover

When you start SQL Server in master-recover mode, only one login
of one user—the System Administrator—is allowed. Immediately

9-6 Backing Up and Restoring the System Databases

Recovering the master Database SYBASE SQL Server Release 10.0

after a buildmaster command on the master database, only the “sa”
account exists, and its password is NULL.

This special master-recover mode is necessary because the generic
master database created with buildmaster does not match the actual
situation on SQL Server: it doesn’t know about any of your database
devices, for example! Any operations on the master database could
make recovery impossible, or at least much more complicated and
time-consuming.

A SQL Server started in master-recover mode is automatically
configured to allow direct updates to the system tables. Certain other
operations (for example, the checkpoint process) are disallowed.

◆ WARNING!
Ad hoc changes to the system tables are dangerous—some changes can
render SQL Server unable to run. Make only the changes described in this
chapter, and always make the changes in a user-defined transaction.

Re-creating Devices Allocations for master

Look at a hard copy of sysusages created before you ran buildmaster, or
your most recent copy of this table. If it has only one line for dbid 1,
your master database size has not been changed, and you can skip to
the next step, ‘‘Checking Your Backup Server sysservers
Information’’ on page 9-11.

◆ WARNING!
If you have increased the size of master , and have user databases on the
master device that are not backed up, you have a difficult recovery
situation. You should call Technical Support for assistance before you
proceed.

If you have more than one row for dbid 1 in your hardcopy of
sysusages, you need to increase the size of master so that you can load
the dump. You must duplicate the vstart value for each allocation for
master in sysusages. This is easiest to do if you have a copy of sysusages
ordered by vstart.

In the simplest cases, additional allocations to master only require the
use of alter database. In more complicated situations, you must allocate

System Administration Guide 9-7

SYBASE SQL Server Release 10.0 Recovering the master Database

space for other databases in order to reconstruct the exact vstart
values needed to recover master.

In addition to the master database, tempdb (dbid =2) and model
(dbid = 3) are located wholly or completely on the master device. In
addition, there may be user databases wholly or partially on the
device.

Determining Which Allocations Are on the Master Device

To determine which vstart values represent allocations on the master
device, look at your hardcopy of the sysdevices table. It shows the low
and high values for each device (the rows for tape devices aren’t
included in this sample):

Page numbers on the master device are between 0 and 8703, so any
database allocation with sysusages.vstart values in this range
represent allocations on the master device.

A Simple Case: Only master Altered

Check all rows for master (except the first) in your saved sysusages
output. Here is sample sysusages information, ordered by vstart:

low high status cntrltype name
 phyname
 mirrorname
----------- ----------- ------ --------- -------

 0 8703 3 0 master
 d_master
 NULL
 16777216 16782335 2 0 sprocdev
 /sybase/new10_sprocdev
 NULL

Page Range for
Master Device

dbid segmap lstart size vstart pad unreservedpgs
---- ------ ------ ------ ---------- ---- -------------
 1 7 0 1536 4 NULL 480
 3 7 0 1024 1540 NULL 680
 2 7 0 1024 2564 NULL 680
 1 7 1536 1024 3588 NULL 1024
 4 7 0 5120 33554432 NULL 1560

dbid = 1, an additional
allocation for master

vstart between 0
and 8703

size of this
allocation

9-8 Backing Up and Restoring the System Databases

Recovering the master Database SYBASE SQL Server Release 10.0

In this simple example, the first four rows have vstart values between
0 and 8703. Only dbid 4 is on another device.

buildmaster re-creates the first three rows, so sysusages in your newly-
rebuilt master database should match your hardcopy.

The fourth row shows an additional allocation for master, with
vstart = 3588 and size = 1024.

Figure 9-1 shows the storage allocations for the above sysusages data.

Figure 9-1: Allocations on a Master Device

In this simple case, you only need to issue an alter database command
to increase the size of the master database. To determine the size to
provide for this command, look at the size column for the second
allocation to master. Divide by 512 (use 256 on Stratus). In this
example, the additional row for master indicates an allocation of 1024
data pages, so the correct parameter is 2, the result of 1024/512.

Use that result for the alter database command. Log on to the server as
“sa”. Remember that buildmaster set the password for this account to
NULL. Issue the alter database command. For the example above, use:

alter database on master = 2

Check the size and vstart values for the new row in sysusages.

vstart values

Master
Device

master, 3MB

model, 2MB

tempdb, 2MB

master, 1MB

4

3588

2654

1540

System Administration Guide 9-9

SYBASE SQL Server Release 10.0 Recovering the master Database

A More Complex Allocation

Your output from sysusages will have more allocations on the master
device if:

• Your SQL Server has been upgraded from earlier SQL Server
releases

• A System Administrator has increased the size of master, model
and/or tempdb on the master device.

• A user database has been created or altered on the master device.

You must restore these allocations up to the last row for the master
database, dbid 1. Here is an example of sysusages showing additional
allocations on the master device, in order by vstart:

This copy of sysusages shows the following allocations on the master
device, (excluding the three created by buildmaster):

• One for master, dbid = 1, size = 512, vstart = 3588

• One for a user database, dbid = 5, size = 1024, vstart = 4100 (consult
your hardcopy sysdatabases to find the name of this database)

• One for tempdb, dbid = 2, size = 1024, vstart = 5124

• Another allocation for master, dbid = 1, size = 512, vstart = 6148

The final allocation in this output is not on the master device.

dbid segmap lstart size vstart pad unreservedpgs
---- ------ ------ ----- -------- ---- -------------
 1 7 0 1536 4 NULL 472
 3 7 0 1024 1540 NULL 680
 2 7 0 1024 2564 NULL 680
 1 7 1536 512 3588 NULL 512
 5 7 0 1024 4100 NULL 680
 2 7 1024 1024 5124 NULL 1024
 1 7 2048 512 6148 NULL 512
 4 7 0 5120 16777216 NULL 1560

dbid = 1, additional
allocations for master vstart between 0

and 8703

9-10 Backing Up and Restoring the System Databases

Recovering the master Database SYBASE SQL Server Release 10.0

Figure 9-2 shows the allocations on the master device.

Figure 9-2: Complex Allocations on a Master Device

You need to issue a set of alter database and create database commands to
recreate all of the allocations. If your sysusages table lists additional
allocations on the master device after the last allocation for master,
note that you do not have to recreate them.

To determine the size for the create database and alter database
commands, divide the value shown in the size column of the
sysusages output by 512 (256 on Stratus). To reconstruct the
allocation, issue these commands, in this order:

To restore the first allocation to master, dbid 1, size = 512:

alter database master on default = 1

To create a user database, dbid 5, size = 1024:

create database userdb on default = 2

To allocate more space to tempdb, dbid 2, size = 1024:

alter database tempdb on default = 2

To add the final allocation to master, dbid 1, size = 512:

alter databse master on default = 1

You only need to restore all allocations up to and including the last
line for the master device. When you load the backup of master, this
table is completely restored from the dump.

master, 3MB

model, 2MB

tempdb, 2MB

master, 1MB

4

3588

2654

vstart values

1540

master, 1MB

userdb, 2MB

tempdb, 2MB

4100

5124

6148

Master
Device

System Administration Guide 9-11

SYBASE SQL Server Release 10.0 Recovering the master Database

◆ WARNING!
This set of steps will wipe out the data in the user database. on the master
device. If it has not been backed up since it was last changed, do not
proceed. Technical Support may be able to recover for you.

At this point, carefully check the current sysusages values with the
values in your hardcopy:

• If all of the vstart values for master match, proceed to the next step.

• If the values do not match, an attempt to load the master database
will almost certainly fail. Shut down the server, and begin again
by running buildmaster. See ‘‘Building a New master Database’’ on
page 9-4.

If your sysusages values look correct, proceed to the next step.

Checking Your Backup Server sysservers Information

Log on to the server as “sa”, using the NULL password.

If the network name of your Backup Server is not SYB_BACKUP, you
must update sysservers so that your SQL Server can communicate
with its Backup Server. Check the Backup Server name in your
interfaces file, and issue this command on SQL Server:

select *
from sysservers
where srvname = "SYB_BACKUP"

Check the srvnetname in the output from this command. If it matches
the interfaces file entry for the Backup Server for your server, skip to
the next step.

If the srvnetname reported by this command is not the same as the
name of your Backup Server in the interfaces file, you must update
sysservers.The example below changes the Backup Server’s network
name to PRODUCTION_BSRV:

begin transaction

update sysservers
set srvnetname = "PRODUCTION_BSRV"
where srvname = "SYB_BACKUP"

Execute this command, and check to see that it modified only one
row. Issue the select command again, and check to be sure that the
correct row was modified, and that it contains the correct value. If the

9-12 Backing Up and Restoring the System Databases

Recovering the master Database SYBASE SQL Server Release 10.0

update command modified more than one row, or if it modified the
wrong row, issue a rollback transaction command, and attempt the
update again.

If the command correctly modified the Backup Server’s row, issue a
commit transaction command.

Checking for a Running Backup Server

Use the showserver command from your operating system to verify
that your Backup Server is running, and restart your Backup Server
if necessary. See showserver and startserver in the SQL Server Utility
Programs manual for your operating system.

Loading a Backup of master

Load the most recent backup of the master database with load database.
Here are examples of the load commands:

On UNIX platforms:

load database master from "/dev/nrmt4"

On OpenVMS:

load database master from "MTA0:"

See Chapter 8, ‘‘Backing Up and Restoring User Databases’’ for
information on command syntax. See the System Administration
Guide Supplement for PC platform examples.

After the load database command completes successfully, SQL Server
automatically shuts itself down. Watch for any error messages
during the load, and during the shutdown.

Restarting SQL Server in Master-Recover Mode

Use startserver to restart SQL Server in master-recover mode. Watch
for error messages during recovery.

Check the sysusages, sysdatabases and sysdevices tables in your
recovered server against your hardcopy. Look especially for these
problems:

• If there are devices in your hardcopy that are not included in the
restored sysdevices, then you have added devices since your last
backup, and you must run disk reinit and disk refit.

System Administration Guide 9-13

SYBASE SQL Server Release 10.0 Recovering the master Database

• If there are databases listed in your hardcopy that are not listed in
your restored sysdatabases table, you have added a database since
the last time you backed up master. You must run disk refit.

Loading the backup of master restores the “sa” account to its previous
state. It restores the password on the “sa” account, if any. If you used
sp_locklogin to lock this account before the backup was made, the “sa”
account will now be locked. Perform the rest of these steps using an
account with the System Administrator role.

Re-Adding Database Devices

If you have added any database devices since the last dump—that is,
if you have issued a disk init command—you must add each new
device to sysdevices with the disk reinit command. If you save scripts
from your original disk init commands, use them to determine the
parameters for the disk reinit command. If the size you provide is too
small, you may corrupt your database.

If you do not save your disk init scripts, look at your most recent
hardcopy of sysdevices to determine the correct parameters for disk
reinit.

If you store your sybsystemprocs database on a separate physical
device, be sure to include a disk reinit command for sybsystemprocs if it
is not listed in sysdevices at this point.

After running disk reinit, compare your sysdevices table to the copy you
made before running buildmaster.

disk reinit parameter sysdevices data Notes

name name Use the same name, especially if you
have any scripts which create or
alter databases, or add segments.

physname phyname Must be full path to device.

vdevno low/16777216 Not necessary to use the same value
for vdevno, but you must be sure to
use a value not already in use.

size (high-low) +1 Extremely important to provide
correct size information.

Table 9-2: Using sysdevices to Determine disk reinit Parameters

9-14 Backing Up and Restoring the System Databases

Recovering the master Database SYBASE SQL Server Release 10.0

disk reinit can only be run from the master database, and only by a
System Administrator. Permission cannot be transferred to other
users. Its syntax is:

disk reinit
 name = " device_name ",
 physname = " physical_name ",
 vdevno = virtual_device_number ,
 size = number_of_blocks
 [, vstart = virtual_address ,
 cntrltype = controller_number]

For more on disk reinit, see the discussion of disk init in Chapter 3,
‘‘Managing Physical Resources’’, or Volume 1 of the SQL Server
Reference Manual.

Rebuilding sysusages and sysdatabases

If you have added database devices or created or altered databases
since the last database dump, use disk refit to rebuild the sysusages and
sysdatabases tables.

disk refit can be run only from the master database and only by a
System Administrator. Permission cannot be transferred to other
users. Its syntax is:

disk refit

◆ WARNING!
Providing inaccurate information in the disk reinit command may lead to
permanent corruption when you update your data! Be sure to check your
SQL Server with dbcc after running disk refit.

Checking SQL Server

Check SQL Server carefully:

1. Compare your hard copy of sysusages with the new on-line
version.

2. Compare your hard copy of sysdatabases with the new on-line
version.

3. Run dbcc checkalloc on each database.

4. Examine important tables in each database.

System Administration Guide 9-15

SYBASE SQL Server Release 10.0 Recovering the master Database

◆ WARNING!
If you find discrepancies in sysusages , call Technical Support for help.

If you find other problems, rerun disk reinit and disk refit and check your
SQL Server again.

Restoring model

If you are restoring only the master database, you can skip this step.

If you are restoring the entire master device, you must also restore
model:

• Load your backup of model, if you keep a backup.

• If you do not have a backup:

- Run the installmodel script:

On UNIX platforms:

cd $SYBASE/scripts
setenv DSQUERY server_name
isql -Usa -P password -S server_name < installmodel

On OpenVMS:

set default sybase_system:[sybase.scripts]
define dsquery server_name
isql/user="sa"/password=" password "

/input=installmodel

- Re-do any changes you have made to model.

For PC platform examples, refer to the System Administration Guide
Supplement.

Loading User Databases

If you had user databases stored on the master device, and had to
issue create database commands during the previous steps, reload your
user databases with your usual load commands.

Restoring Server User IDs

Check your hardcopy of syslogins and your restored syslogins table.
Look especially for the following:

9-16 Backing Up and Restoring the System Databases

Recovering the master Database SYBASE SQL Server Release 10.0

• If you have added server logins since the last backup of master,
reissue the sp_addlogin commands.

• If you have dropped server logins, reissue the sp_droplogin
commands.

• If you have locked server accounts, reissue the sp_locklogin
commands.

• There may be other differences due to use of the sp_modifylogin
procedure, by users or by System Administrators.

It is very important to ensure that users receive the same suid.
Mismatched suid values in databases can lead to permission
problems, and users may not be able to access tables or run
commands.

An effective technique for checking existing suid values is to perform
a union on the sysusers tables in your user databases. You can include
master in this procedure, if users have permission to use master.

For example:

select suid, name from master..sysusers
union
select suid, name from sales..sysusers
union
select suid, name from parts..sysusers
union
select suid, name from accounting..sysusers

If your resulting list shows skipped suid values in the range where
you need to redo the logins, you must add placeholders for the
skipped values, and then drop them with sp_droplogin, or lock them
with sp_locklogin.

Restarting SQL Server

Once you have finished restoring the master database, use the
shutdown command to shut down SQL Server. Then use startserver to
restart in multi-user mode.

Backing Up master

When you have completely restored the master database and have
run full dbcc integrity checks, back up the database using your usual
dump commands.

System Administration Guide 9-17

SYBASE SQL Server Release 10.0 Recovering the model Database

Recovering the model Database

This section describes recovery of the model database when only the
model database needed to be restored. It includes instructions for
these scenarios:

• You have not made any changes to model, so you only need to
restore the generic model database.

• You have changed model, and have a backup.

• You have changed model, and do not have a backup.

Restoring the Generic model Database

buildmaster can restore the model database without affecting master.
You must always shut down the server before using buildmaster.

➤ Note
Be sure to shut down SQL Server before running buildmaster.

On UNIX platforms:

buildmaster -d /devname -x

On OpenVMS:

buildmaster /disk = physicalname /model

For PC platform examples, refer to the System Administration Guide
Supplement.

Restoring model from a Backup

If you can issue the use model command successfully, you can restore
your model database from a backup with the load database command.

If you cannot use the database:

1. Follow the instructions above for using buildmaster to restore the
model database.

2. If you have changed the size of model, re-issue the alter database
commands.

3. Load the backup with load database.

9-18 Backing Up and Restoring the System Databases

Recovering the sybsystemprocs Database SYBASE SQL Server Release 10.0

Restoring model with No Backup

If you have changed your model database and do not have a backup,
you should:

• Follow the steps above for restoring a generic model database.

• Re-issue all of the commands you issued to change model.

Recovering the sybsystemprocs Database

The sybsystemprocs database stores the system procedures that are
used to modify and report on system tables. If your routine dbcc
checks on this database report damage, and you do not keep a
backup of this database, you can restore it using installmaster. If you do
keep backups of sybsystemprocs, you can restore it with load database.

Restoring sybsystemprocs with installmaster

1. Check to see what logical device currently stores the database. If
you can still use sp_helpdb, issue this command:

sp_helpdb sybsystemprocs

name db_size owner dbid
 created
 status
------------------- ------------- ---------------- ------
sybsystemprocs 10.0 MB sa 4
 Aug 07, 1993
 trunc log on chkpt

device_fragments size usage free kbytes
------------------ ----------- ---------------- -----------
sprocdev 10.0 MB data and log 3120

The device_fragments column indicates that the database is stored
on sprocdev.

If you cannot use sp_helpdb, this query reports the devices used
by the database, and the amount of space on each device:

select sysdevices.name, sysusages.size / 512
from sysdevices, sysdatabases, sysusages
where sysdatabases.name = "sybsystemprocs"
 and sysdatabases.dbid = sysusages.dbid
 and sysdevices.low <= sysusages.size + vstart
 and sysdevices.high >= sysusages.size + vstart -1

System Administration Guide 9-19

SYBASE SQL Server Release 10.0 Recovering the sybsystemprocs Database

name
---------------- -------
sprocdev 10

On Stratus, use “256” instead of “512” on the first line in the
query above.

2. Drop the database:

drop database sybsystemprocs

If the physical disk is damaged, use sp_dropdevice to drop the
device. If necessary, use disk init to initialize a new database
device. See Chapter 3, ‘‘Managing Physical Resources’’, for more
information on disk init

3. Re-create the sybsystemprocs database on the device, using the
size returned by the query above:

create database sybsystemprocs
on sprocdev = 10

4. Run the installmaster script.

On UNIX platforms:

cd $SYBASE/scripts
setenv DSQUERY server_name
isql -Usa -P password -S server_name < installmaster

On OpenVMS:

set default sybase_system:[sybase.scripts]
define dsquery server_name
isql/user="sa"/password=" password "

/input=installmaster

For PC platform examples, refer to the System Administration
Guide Supplement.

5. If you have made any changes to permissions in sybsystemprocs,
or if you have added your own procedures to the database, you
must re-do the changes.

Restoring sybsystemprocs with load database

If you write system procedures and store them in the sybsystemprocs
database, you have two ways to recover them if the database is
damaged:

• Restore the database from installmaster, as described above, and
then re-create the procedures by re-issuing the create procedure
commands.

9-20 Backing Up and Restoring the System Databases

Recovering the sybsystemprocs Database SYBASE SQL Server Release 10.0

• Keep backups of the database, and load them with load database

If you choose to keep a backup of the database, you should insure
that the complete backup fits on one tape volume, or that you have
more than one SQL Server able to communicate with your Backup
Server. If a dump spans more than one tape volume, you issue the
change-of-volume command using system procedure, sp_volchanged,
which is stored in sybsystemprocs. You can’t issue that command in
the middle of recovering this database.

Here are sample load commands:

On UNIX:

load database sybsystemprocs from "/dev/nrmt4"

On OpenVMS:

load database sybsytemprocs from "MTA0:"

For PC platform examples, refer to the System Administration Guide
Supplement.

System Administration Guide 10-1

Thresholds
10. Managing Free Space with

Introduction

When you create or alter a database, you allocate a finite amount of
space for its data and log segments. As you create objects and insert
data, the amount of free space in the database decreases.

This chapter is part of a four-chapter unit on backup and recovery. It
explains how to use thresholds to monitor the amount of free space
in a database segment. It describes the last-chance threshold, which
helps ensure that you have enough space to dump the transaction
log, and explains how to use additional thresholds to detect space
shortages. It also provides guidelines for creating threshold
procedures.

Monitoring Free Space with the Last-Chance Threshold

A threshold always has a stored procedure associated with it, and the
threshold acts like a trip-wire. When free space on the segment falls
below the amount specified by the threshold, SQL Server executes
the stored procedure.

Each database that stores its transaction log on a separate segment
has a last-chance threshold. The threshold is an estimate of the
number of free log pages that would be required to back up the
transaction log. SQL Server automatically adjusts the last-chance
threshold as you allocate more space to the log segment.

When the amount of free space in the log segment falls below the
last-chance threshold, SQL Server automatically executes a special
stored procedure called sp_thresholdaction. (You can specify a different
last-chance threshold procedure with sp_modifythreshold.)

For more information about See

Backup and recovery issues to
address before production

Chapter 7, ‘‘Developing a Backup
and Recovery Plan’’

dump, load, and sp_volchanged syntax Chapter 8, ‘‘Backing Up and
Restoring User Databases’’

Backing up and restoring the system
databases

Chapter 9, ‘‘Backing Up and
Restoring the System Databases’’

Table 10-1: Further Information About Backup and Recovery

10

10-2 Managing Free Space with Thresholds

Monitoring Free Space with the Last-Chance Threshold SYBASE SQL Server Release 10.0

Figure 10-1 illustrates a log segment with a last-chance threshold.
The shaded area represents log space that has already been used; the
unshaded area, free log space. The last-chance threshold has not yet
been crossed:

Figure 10-1: Log Segment with a Last-Chance Threshold

Crossing the Threshold

As users execute transactions, the amount of free log space decreases.
When the amount of free space crosses the last-chance threshold,
SQL Server automatically executes sp_thresholdaction:

Figure 10-2: Executing sp_thresholdaction when the Last-chance Threshold is Reached

Controlling How Often sp_thresholdaction Executes

SQL Server uses a “hysteresis value”, the global variable
@@thresh_hysteresis, to control how sensitive thresholds are to
variations in free space. Once a threshold executes its procedure, it is
deactivated. The threshold remains inactive until the amount of free
space in the segment rises @@thresh_hysteresis pages above the
threshold. This prevents thresholds from executing their procedures
repeatedly in response to minor fluctuations in free space.

Threshold

Space Used Free Space

More free space less free space

Threshold

Space Used Free Space

More free space less free space

System Administration Guide 10-3

SYBASE SQL Server Release 10.0 Choosing Whether to Abort or Suspend Processes

When the threshold in Figure 10-2 executes sp_thresholdaction, it is
deactivated. In Figure 10-3, the threshold is reactivated when the
amount of free space increases by @@thresh_hysteresis pages:

Figure 10-3: Free Space must Rise by @@thresh_hysteresis to Reactivate Threshold

Choosing Whether to Abort or Suspend Processes

By design, the last-chance threshold allows enough free log space to
record a dump transaction command. There may not be enough room to
record additional user transactions against the database.

When the last-chance threshold is crossed, SQL Server suspends user
processes and displays the message:

Space available in the log segment has fallen
critically low in database 'mydb'. All future
modifications to this database will be suspended
until the log is successfully dumped and space
becomes available.

Only commands that are not recorded in the transaction log (select,
fast bcp, readtext, and writetext) and commands that might be necessary
to free additional log space (dump transaction, dump database, and alter
database) can be executed.

Aborting Processes

To abort user processes rather than suspending them, use the abort
tran on log full option of sp_dboption followed by the checkpoint command.
For example, to abort processes in mydb when the last-chance
threshold is crossed:

Threshold

Space Used Free Space

More free space less free space

Threshold + @@thresh_hysteresis pages

10-4 Managing Free Space with Thresholds

Waking Suspended Processes SYBASE SQL Server Release 10.0

sp_dboption mydb, "abort tran on log full", true

use mydb

checkpoint

Waking Suspended Processes

Once the dump transaction command frees sufficient log space,
suspended processes automatically awaken and complete. If fast bcp,
writetext, or select into has resulted in unlogged changes to the database
since the last backup, the last-chance threshold procedure cannot
execute a dump transaction command. When this occurs, make a copy of
the database with dump database, then truncate the log with dump
transaction.

If this does not free enough space to awaken the suspended
processes, it may be necessary to increase the size of the transaction
log. Use the log on option of the alter database command to allocate
additional log space.

As a last resort, System Administrators can use the sp_who command
to determine which processes are suspended and the following
statement to awaken sleeping processes:

select lct_admin("unsuspend", db_id)

◆ WARNING!
Use the lct_admin function with extreme caution.

After you issue this command, the transactions continue, and may
completely fill up the transaction log. In order to kill suspended
processes, first issue the kill command, and then execute the
command above. See ‘‘Killing Processes’’ on page 11-12 for more
information.

Adding, Changing, and Deleting Thresholds

The Database Owner or System Administrator can create additional
thresholds to monitor free space on any segment in the database.
Each database can have up to 256 thresholds, including the last-
chance threshold.

The sp_addthreshold, sp_modifythreshold, and sp_dropthreshold system
procedures allow you to create, change, and delete thresholds. To
prevent users from accidentally affecting thresholds in the wrong

System Administration Guide 10-5

SYBASE SQL Server Release 10.0 Adding, Changing, and Deleting Thresholds

database, these procedures all require you to specify the name of the
current database.

Displaying Information About Existing Thresholds

Use the system procedure sp_helpthreshold for information about all
thresholds in a database. Use sp_helpthreshold segment_name for
information about the thresholds on a particular segment.

The following example displays information about the thresholds on
the database’s default segment. Since “default” is a reserved word, it
must be enclosed in quotation marks. The output of shows that there
is one threshold on this segment set at 200 pages. The zero in the
last chance column indicates that this is not a last-chance threshold:

sp_helpthreshold "default"

name free_space last chance? proc_name
----- ---------- ----------- ---------
default 200 0 space_dataseg

(1 row affected)

Adding a Threshold

Use the system procedure sp_addthreshold to create new thresholds. Its
syntax is:

sp_addthreshold database_name, segment_name,
free_pages, proc_name

The database_name must specify the name of the current database.
The remaining parameters specify the segment whose free space is
being monitored, the size of the threshold in database pages, and the
name of a stored procedure.

When the amount of free space on the segment falls below the
threshold, an internal SQL Server process executes the associated
procedure. This process has the permissions of the user who created
the threshold, at the time he or she executed sp_addthreshold, less any
permissions that have since been revoked.

Thresholds can execute a procedure in the same database, in another
user database, in sybsystemprocs or in master. They can also call a
remote procedure on an Open Server. sp_addthreshold does not verify
that the threshold procedure exists at the time you create the
threshold.

10-6 Managing Free Space with Thresholds

Adding, Changing, and Deleting Thresholds SYBASE SQL Server Release 10.0

Changing a Threshold

Use the system procedure sp_modifythreshold to associate a threshold
with a new threshold procedure, free-space value, or segment.
sp_modifythreshold drops the existing threshold and creates a new one
in its place. Its syntax is:

sp_modifythreshold database_name , segment_name ,
free_ pages [, new_procedure [, new_free_pages
[, new_segment]]]

database_name must be the name of the current database.
segment_name, and free_pages identify which threshold you want to
change.

For example, to execute a threshold procedure when free space on
the segment falls below 175 pages rather than below 200 pages:

sp_modifythreshold mydb, "default", 200, NULL, 175

In this example, NULL acts as a placeholder so that new_free_pages
falls in the correct place in the parameter list. The name of the
threshold procedure is not changed.

The person who modifies the threshold becomes the new threshold
owner. When the amount of free space on the segment falls below the
threshold, SQL Server executes the threshold procedure with the
owner’s permissions at the time he or she executed sp_modifythreshold,
less any permissions that have since been revoked.

Specifying a New Last-Chance Threshold Procedure

You can use sp_modifythreshold to change the name of the procedure
associated with the last-chance threshold. You cannot use it to
change the amount of free space or the segment name for the last-
chance threshold.

sp_modifythreshold requires that you specify the number of free pages
associated with the last-chance threshold. Use sp_helpthreshold to
determine this value.

The following example displays information about the last-chance
threshold, then specifies a new procedure, sp_new_thresh_proc, to
execute when the threshold is crossed:

System Administration Guide 10-7

SYBASE SQL Server Release 10.0 Creating an Additional Threshold for the Log Segment

sp_helpthreshold logsegment

segment name free pages last chance? threshold procedure
------------ ---------- ------------ -------------------
logsegment 40 1 sp_thresholdaction
(1 row affected, return status = 0)

sp_modifythreshold mydb, logsegment, 40,
sp_new_thresh_proc

Dropping a Threshold

Use the system procedure sp_dropthreshold to remove a free-space
threshold from a segment. Its syntax is:

sp_dropthreshold database_name, segment_name,
free_pages

The database_name must specify the name of the current database.
You must specify both the segment name and the number of free
pages, since there can be several thresholds on a particular segment.
For example:

sp_dropthreshold mydb, "default", 200

Creating an Additional Threshold for the Log Segment

When the last-chance threshold is crossed, all transactions are
aborted or suspended until sufficient log space is freed. In a
production environment, this can have a heavy impact on users.
Adding a second, correctly placed threshold on your log segment
can minimize the chances of crossing the last-chance threshold (and
of blocking user transactions).

The additional threshold should dump the transaction log often
enough so that the last-chance threshold is rarely crossed. It should
not dump it so often that restoring the database requires the loading
of too many tapes.

This section helps you determine the best place for a second log
threshold. It starts by adding a threshold set at 50% of log capacity,
and adjusts this threshold based upon space usage at your site.

Adding a Log Threshold at 50% of Available Space

Use the following procedure to add a log threshold at 50% of
capacity:

10-8 Managing Free Space with Thresholds

Creating an Additional Threshold for the Log Segment SYBASE SQL Server Release 10.0

1. Use the following query to determine the log’s capacity in pages:

select sum(size)
from master..sysusages
where dbid = db_id(“ database_name”)
and (segmap & 4) = 4

2. Use sp_addthreshold to add a new threshold at 50% of log capacity.
For example, if the log’s capacity is 2048 pages, add a threshold
at 1024 pages:

sp_addthreshold mydb, logsegment, 1024, thresh_proc

3. Use the create procedure statement to create a simple threshold
procedure that dumps the transaction log to the appropriate
devices. (For more information about creating threshold
procedures, see the section ‘‘Creating Threshold Procedures’’
later in this chapter.)

Testing and Adjusting the New Threshold

Use the dump transaction command to make sure your transaction log is
less than 50% full. Then use the following procedure to test the new
threshold:

1. Fill the transaction log by simulating routine user action. Use
automated scripts that perform typical transactions at the
projected rate.

When the 50% threshold is crossed, your threshold procedure
will dump the transaction log. Since this is not a last-chance
threshold, transactions will not be suspended or aborted; the log
will continue to grow during the dump.

2. While the dump is in progress, use sp_helpsegment to monitor
space usage on the log segment. Record the maximum size of the
transaction log just before the dump completes.

3. If there was considerable space left in the log when the dump
completed, you may not need to dump the transaction log so
soon:

System Administration Guide 10-9

SYBASE SQL Server Release 10.0 Creating an Additional Threshold for the Log Segment

Figure 10-4: Transaction Log with Additional Threshold at 50%

Try waiting until only 25% of log space remains:

Figure 10-5: Moving Threshold Leaves Less Free Space after Dump

Use sp_modifythreshold to adjust the free space value to 25% of log
capacity. For example:

sp_modifythreshold mydb, logsegment, 512,
thresh_proc

4. Dump the transaction log and test the new free space value. If
the last chance threshold is crossed before the dump completes,
you are not beginning the dump transaction soon enough:

Last Chance
Threshold

New Threshold set at
50% of Log Size

Additional log records
added during dump

Extra space left by end of
dump; try a lower value for
free-space

Last Chance
Threshold

Additional log records
added during dump

Free space set at 25%
of Log Size

More appropriate threshold:
leaves some space, but not
too much

10-10 Managing Free Space with Thresholds

Creating Additional Thresholds on Other Segments SYBASE SQL Server Release 10.0

Figure 10-6: Additional Log Threshold Doesn’t Begin Dump Early Enough

25% free space is not enough. Try initiating the dump transaction
when the log has 37.5% fee space:

Figure 10-7: Moving Threshold Leaves Enough Free Space to Complete Dump

Use sp_modifythreshold to change the free-space value to 37.5% of
log capacity. For example:

sp_modifythreshold mydb, logsegment, 768,
 thresh_proc

Creating Additional Thresholds on Other Segments

You can also create thresholds on data segments. For example, you
might create a threshold on the default segment used to store tables
and indexes. You would also create an associated stored procedure to

Last Chance
Threshold

Additional log records
added during dump

Free space set at
25% of Log Size

Free-space value too low; log
fills to LCT before dump
completes. User processes
blocked or aborted. Try again.

Additional log records
added during dump

Free space set at
37.5% of Log Size

More appropriate threshold
on a system with greater
update activity

Last Chance
Threshold

System Administration Guide 10-11

SYBASE SQL Server Release 10.0 Creating Additional Thresholds on Other Segments

print messages in your error log when space on the default segment
falls below this threshold. If you monitor the error log for these
messages, you can add space to the database device when you need
it—before your users encounter problems.

The following example creates a threshold on the default segment of
mydb. When the free space on this segment falls below 200 pages,
SQL Server executes the procedure space_dataseg:

sp_addthreshold mydb, "default", 200, space_dataseg

Determining Threshold Placement

Each new threshold must be at least 2 times @@thresh_hysteresis
pages from the next closest threshold:

Figure 10-8: Determining Where to Place a Threshold

Use this command:

 select @@thresh_hysteresis

to see the hysteresis value for a database.

In the following example, a segment has a threshold set at 100 pages.
The hysteresis value for the database is 64 pages. The next threshold
must be at least 100 + (2 * 64), or 228 pages.

select @@thresh_hysteresis

 64

sp_addthreshold user_log_dev, 228,
sp_thresholdaction

}}

2*hysteresis value

Existing
Threshold

Next closest
Threshold

More free space less free space

10-12 Managing Free Space with Thresholds

Creating Threshold Procedures SYBASE SQL Server Release 10.0

Creating Threshold Procedures

Sybase does not supply sp_thresholdaction or other threshold
procedures. You must create these procedures yourself to ensure that
they are tailored to your site’s needs.

Suggested actions for sp_thresholdaction include writing to the server’s
error log and dumping the transaction log to increase the amount of
log space. You can also design the threshold procedure to execute
remote procedure calls to an Open Server, sending mail to the
appropriate individuals when a threshold is crossed.

This section provides some guidelines for writing threshold
procedures. It includes two sample procedures.

Declaring Procedure Parameters

SQL Server passes four parameters to a threshold procedure:

• @dbname, varchar(30), which contains the database name.

• @segmentname, varchar(30), which contains the segment name.

• @space_left, int, which contains the space-left value for the
threshold.

• @status, int, which has a value of 1 for last-chance thresholds and
0 for other thresholds.

These parameters are passed by position rather than by name. Your
procedure can use other names for these parameters, but must
declare them in the order shown and with the datatypes shown.

Generating Error Log Messages

Executing a threshold procedure does not automatically generate
any log messages: if your procedure does not contain a print or raiserror
statement, the error log will not contain any record of the threshold
event. You should include a print statement near the beginning of
your procedure to record the database name, segment name, and
threshold size in the error log.

The process that executes threshold procedures is an internal SQL
Server process. It does not have an associated user terminal or
network connection. If you test your threshold procedures by
executing them directly (that is, using execute procedure_name) during a
terminal session, you see the output from the print and raiserror
messages on your screen. When the same procedures are executed by

System Administration Guide 10-13

SYBASE SQL Server Release 10.0 Creating Threshold Procedures

reaching a threshold, the messages go to the error log. The messages
in the log include the date and time.

For example, if sp_thresholdaction includes this statement:

print "LOG DUMP: log for ’%1!’ dumped", @dbname

SQL Server writes this message to the error log:

00: 92/09/04 15:44:23.04 server: background task message: LOG
DUMP: log for ’pubs2’ dumped

Dumping the Transaction Log

If your sp_thresholdaction procedure includes a dump transaction
command, SQL Server dumps the log to the devices named in the
procedure. The dump transaction command truncates the transaction
log by removing all pages from the beginning of the log, up to the
page just before the page that contains an uncommitted transaction
record

Once there is enough log space, suspended transactions are
awakened. If you abort transactions rather than suspending them,
users must resubmit them.

Generally, dumping to a disk is not recommended, especially to a
disk that is on the same machine or the same disk controller as the
database disk. However, since threshold-initiated dumps can take
place at any time, you may wish to dump to disk and then copy the
resulting files to off-line media. (You will have to copy the files back
to the disk in order to reload them.)

Your choice will depend on:

• Whether you have a dedicated dump device online, loaded and
ready to receive dumped data

• Whether you have operators available to mount tape volumes
during all times when your database is available

• The size of your transaction log

• Your transaction rate

• Your regular schedule for dumping databases and transaction
logs

• Available disk space

• Other site-specific dump resources and constraints

10-14 Managing Free Space with Thresholds

Creating Threshold Procedures SYBASE SQL Server Release 10.0

A Simple Threshold Procedure

Following is a simple procedure that dumps the transaction log and
prints a message to the error log. Because this procedure uses a
variable (@dbname) for the database name, it can be used for all
databases on a SQL Server:

create procedure sp_thresholdaction
@dbname varchar(30),
@segmentname varchar(30),
@free_space int,
@status int

as
dump transaction @dbname

to tapedump1
print "LOG DUMP: ’%1! for ’%2!’ dumped",

@segmentname, @dbname

A More Complex Procedure

The next threshold procedure performs different actions, depending
on the value of the parameters passed to it. Its conditional logic
allows it to be used with both log and data segments.

This procedure:

• Prints a “LOG FULL” message if the procedure was called as the
result of reaching the log’s last-chance threshold. The status bit is
1 for the last-chance thresholds and 0 for all other thresholds. The
test if (@status&1) = 1 returns a value of true only for the last-chance
threshold.

• Verifies that the segment name provided is the log segment. The
segment ID for the log segment is always 2, even if the name has
been changed.

• Prints “before” and “after” size information on the transaction
log. If the log did not shrink significantly, a long-running
transaction may be causing the log to fill.

• Prints the time the transaction log dump started and stopped,
helping gather data about dump durations.

• Prints a message in the error log if the threshold is not on the log
segment. The message gives the database name, the segment
name and the threshold size, letting you know that the data
segment of a database is filling up.

System Administration Guide 10-15

SYBASE SQL Server Release 10.0 Creating Threshold Procedures

create procedure sp_thresholdaction
@dbname varchar(30),
@segmentname varchar(30),
@space_left int,
@status int

as
declare @devname varchar(100),

@before_size int,
@after_size int,
@before_time datetime,
@after_time datetime,
@error int

/*
** if this is a last-chance threshold, print a LOG FULL msg
** @status is 1 for last-chance thresholds,0 for all others
*/
if (@status&1) = 1
begin

print "LOG FULL: database ’%1!’", @dbname
end

/*
** if the segment is the logsegment, dump the log
** log segment is always "2" in syssegments
*/
if @segmentname = (select name from syssegments

where segment = 2)
begin

/* get the time and log size
** just before the dump starts
*/
select @before_time = getdate(),

@before_size = reserved_pgs(id, doampg)
from sysindexes
where sysindexes.name = "syslogs"

print "LOG DUMP: database ’%1!’, threshold ’%2!’",
@dbname, @space_left

select @devname = "/backup/" + @dbname + "_" +
convert(char(8), getdate(),4) + "_" +
convert(char(8), getdate(), 8)

dump transaction @dbname to @devname

/* error checking */
select @error = @@error
if @error != 0

10-16 Managing Free Space with Thresholds

Creating Threshold Procedures SYBASE SQL Server Release 10.0

begin
print "LOG DUMP ERROR: %1!", @error

end

/* get size of log and time after dump */
select @after_time = getdate(),

@after_size = reserved_pgs(id, doampg)
from sysindexes
where sysindexes.name = "syslogs"

/* print messages to error log */
print "LOG DUMPED TO: device ’%1!", @devname
print "LOG DUMP PAGES: Before: ’%1!’, After ’%2!’",

@before_size, @after_size
print "LOG DUMP TIME: %1!, %2!", @before_time, @after_time

end /* end of ’if segment = 2’ section */
else /* this is a data segment, print a message */
begin

print "THRESHOLD WARNING: database ’%1!’, segment ’%2!’ at
’%3!’ pages", @dbname, @segmentname, @space_left
end

Deciding Where to Put a Threshold Procedure

Although you can create a separate procedure to dump the
transaction log for each threshold, it is far easier to create a single
threshold procedure that is executed by all of your log segment
thresholds. When the amount of free space on a segment falls below
a threshold, SQL Server reads the systhresholds table in the affected
database for the name of the associated stored procedure. The entry
in systhresholds can specify any of the following:

• A remote procedure call to an Open Server

• A procedure name qualified by a database name (for example,
sybsystemprocs.dbo.sp_thresholdaction)

• An unqualified procedure name

If the procedure name does not include a database qualifier, SQL
Server looks in the database where the shortage of space occurred. If
it cannot find the procedure there, and if the procedure name begins
with the characters “sp_”, SQL Server looks for the procedure in the
sybsystemprocs database and then in master database.

If SQL Server cannot find the threshold procedure, or cannot execute
it, it prints a message in the error log.

System Administration Guide 10-17

SYBASE SQL Server Release 10.0 Disabling Free Space Accounting for Data Segments

Disabling Free Space Accounting for Data Segments

Use the no free space acctg option to sp_dboption, followed by the
checkpoint command, to disable free space accounting on non-log
segments. You cannot disable free-space accounting on the log
segment.

When you disable free space accounting, only the thresholds on your
log segment monitor space usage. Crossing thresholds on your data
segments will not cause your threshold procedures to be executed.
Disabling free space accounting speeds recovery time because free-
space counts are not recomputed during recovery for any segment
except the log segment.

The following example turns off free-space accounting for the
production database:

sp_dboption production,
"no free space acctg", true

◆ WARNING!
System procedures cannot provide accurate information about space
allocation when free-space accounting is disabled.

Creating a Last-Chance Threshold for Existing Databases

When you upgrade an existing database, it does not automatically
acquire a last-chance threshold. Use the lct_admin system function in
existing databases to create a last-chance threshold. Its syntax is:

select lct_admin ("lastchance", db_id())

➤ Note
Only databases that store their logs on a separate segment can have a last-

chance threshold. See ‘‘Moving the Transaction Log to Another Device’’ on

page 3-28 for more information.

10-18 Managing Free Space with Thresholds

Creating a Last-Chance Threshold for Existing Databases SYBASE SQL Server Release 10.0

Special Topics

System Administration Guide 11-1

11. Diagnosing System Problems

Introduction

This chapter discusses diagnosing and fixing system problems. Topics
covered include:

• How SQL Server responds to system errors

• The SQL Server and Backup Server error logs

• Error messages

• Types of error messages (severity levels)

• Killing SQL Server processes

How SQL Server Responds to System Problems

When SQL Server encounters a problem—whether caused by the
user or the system—it displays information about the problem, how
serious it is, and what you can do to fix it. This information consists
of:

• A message number, which uniquely identifies the error message

• A severity level number between 10 and 24

• An error state number, which allows unique identification of the
line of SQL Server code at which the error was raised

• An error message, which tells you what the problem is, and
which may suggest how to fix it

For example, here’s what happens if you make a typing error and try
to access a table that doesn’t exist:

select * from pulbishers

Msg 208, Level 16, State 1:
Invalid object(table) name pulbishers

In some cases, there can be more than one error message for a single
query. If there is more than one error in a batch or query, SQL Server
usually reports only the first one. Subsequent errors are caught the
next time you execute the batch or query.

The error messages are stored in master..sysmessages, which is
updated with each new release of SQL Server. Here are the first few
rows (from a server with us_english as the default language):

11

11-2 Diagnosing System Problems

How SQL Server Responds to System Problems SYBASE SQL Server Release 10.0

select error, severity, description
from sysmessages
where error >=101 and error <=106
and langid is null

101 15 Line %d: SQL syntax error.
102 15 Incorrect syntax near '%.*s'.
103 15 The %S_MSG that starts with '%.*s' is too long. Maximum
 length is %d.
104 15 Order-by items must appear in the select-list if the
 statement contains set operators.
105 15 Unclosed quote before the character string '%.*s'.
106 16 Too many table names in the query. The maximum allowable
 is %d.

(6 rows affected)

You can generate your own list by querying sysmessages. Here is
some additional information for writing your query:

• If your server supports more than one language, sysmessages
stores each message in each language. The column langid is NULL
for us_english and matches the syslanguages.langid for other
languages installed on the server. For information about
languages on your server, use sp_helplanguage.

• The dlevel column in sysmessages is currently unused.

• The sqlstate column stores the SQLSTATE value for error conditions
and exceptions defined in ANSI SQL ‘92.

• Message numbers 17000 and greater are system procedure error
messages and message strings.

Error Messages and Message Numbers

The combination message number (error) and the language ID
(langid) uniquely identifies each error message. Messages with the
same message number, but a different language IDs are translations.

select error, description, langid
from sysmessages
where error = 101

System Administration Guide 11-3

SYBASE SQL Server Release 10.0 How SQL Server Responds to System Problems

error description langid
----- -------------------------------------- ------
 101 Line %d: SQL syntax error. NULL
 101 Ligne %1!: erreur de syntaxe SQL. 1
 101 Zeile %1!: SQL Syntaxfehler. 2

(3 rows affected)

The error message text is a description of the problem. The
descriptions often include a line number, a reference to a kind of
database object (a table, column, stored procedure, etc.), or the name
of a particular database object.

In the description field of sysmessages, a percent symbol (%) followed
by a character or character string serves as a place holder for these
pieces of data, which SQL Server supplies when it encounters the
problem and generates the error message. “%d” is a place holder for
a number; “%S_MSG” is a place holder for a kind of database object;
“%.*s”—all within quotes—is a place holder for the name of a
particular database object. Figure 11-1 lists place holders and what
they represent.

For example, the description field for message number 103 is:

The %S_MSG that starts with ’%.*s’ is too long.
Maximum length is %d.

The actual error message as displayed to a user might be:

The column that starts with ’title’ is too long.
Maximum length is 80.

For errors that you report, it is important to include the numbers,
object types, and object names. (See the section ‘‘Reporting Errors’’
on page 11-11.)

Variables in Error Message Text

The following chart explains the abbreviations that appear in the
error message text provided with each error message explanation:

Symbol Stands For

%d,%D a decimal number

%x, %X, %.*x, %lx,
%04x, %08lx

a hexadecimal number

Table 11-1: Error Text Abbreviation Key

11-4 Diagnosing System Problems

How SQL Server Responds to System Problems SYBASE SQL Server Release 10.0

Error Logging

Most error messages from SQL Server go only to the user’s screen.

The backtrace from fatal error messages (severity levels 19 and
higher), and error messages from the kernel are sent to an error log
file. The name of this file varies; see the System Administration Guide
Supplement for your platform or the SQL Server Utility Programs
manual.

➤ Note
The error log file is owned by the user who installed SQL Server (or to the

person who started the server after an error log was removed). Permissions or

ownership problems with the error log at the operating system level can block

successful startup of SQL Server.

SQL Server creates an error log for you if it does not already exist.
The location of this log depends on how you start the server:

• If you use startserver and the “runserver” file created by the SQL
Server installation process, the dataserver command includes a flag
that specifies the location of the error log.

• If you type the dataserver command (or sqlsrvr for PC platforms)
from the operating system, you can include the flag that specifies
the location of the errorlog (-e for UNIX and PC platforms;
/errorfile in OpenVMS).

• If you do not include the error log flag, the error log is created in
the directory where you start SQL Server.

%s a null-terminated string

%.*s, %*s, %*.s a string, usually the name of a particular database object

%S_type a SQL Server-defined structure

%c a single character

%f a floating point number

%ld a long decimal

%lf a double floating point number

Symbol Stands For

Table 11-1: Error Text Abbreviation Key

System Administration Guide 11-5

SYBASE SQL Server Release 10.0 How SQL Server Responds to System Problems

➤ Note
You should always restart SQL Server from the same directory, or with the

“runserver” file, or the error log flag, so that you can locate your error logs.

Each time you start a particular server, boot messages in the error log
provide information on the success (or failure) of the start and the
recovery of each database on the server. Subsequent fatal error
messages and all kernel error messages are appended to the error log
file. If you need to reduce the size of the error log (throw out old or
unneeded messages) you must prune the log while SQL Server is
shut down.

Error Log Format

Entries in the error log include the following information:

• The engine involved for each log entry. The engine number is
indicated by a two digit number followed by a colon at the
beginning of each line.

• The date, displayed in this format: yy/mm/dd, which allows you to
sort error messages by date.

• The time, displayed in 24-hour format. The time format includes
seconds and hundredths of a second.

• The error message itself.

The following is an example of a line from the error log:

00: 94/02/18 13:40:28.13 server: Recovery complete.

The entry “00:” at the beginning of the line shows that the message
was produced by engine number 0. The date is February 18, 1994,
and the time is 1:40 p.m., 28 seconds, and 13 hundredths of a second.

Severity Levels

The severity level provides information about the kind of problem
SQL Server has encountered. For maximum integrity, when SQL
Server responds to error conditions it displays messages from
sysmessages but takes action according to an internal table. Because a
few corresponding messages differ in severity levels, occasionally
you may notice a difference in expected behavior if you are
developing applications or procedures that refer to SQL Server
messages and severity levels.

11-6 Diagnosing System Problems

How SQL Server Responds to System Problems SYBASE SQL Server Release 10.0

◆ WARNING!
You can create your own error numbers and messages based on SQL
Server error numbers (say by adding 20,000 to the SQL Server value), but
do not alter the SQL Server-supplied system messages in sysmessages .

Add user-defined error messages to sysusermessages with the stored
procedure sp_addmessage. See Volume 2 of the SQL Server Reference
Manual for more information.

In isql and Data Workbench, severity level 10 (“status” or
“informational”) messages do not display their message number or
severity level. In Open Client applications, SQL Server returns “0”
for severity level 10.

Severity levels through 16 indicate problems caused by mistakes in
what users have entered.

Severity levels over 16 indicate software or hardware errors. If the
number is 17 or 18, you’ll be able to continue the work you’re doing
(though you may not be able to execute a particular command).

Problems with severity levels 19 or over are system problems. They
are fatal errors, which means that the process (the program code that
is running in order to accomplish the task that you specified in your
command) is no longer running. The process freezes its state before it
stops, recording information about what was happening. It is then
killed and disappears.

These errors break the user’s connection to SQL Server. Depending
on the problem, a user may or may not be able to reconnect and
resume working. Some problems with severity levels in this range
affect only one user and one process. Others affect all the processes in
the database. In some cases, it will be necessary to restart SQL Server.
These problems don’t necessarily damage a database or its objects,
but they can. They may also result from earlier damage to a database
or its objects. Still other problems are caused by hardware
malfunctions.

A backtrace of fatal error messages from the kernel is directed to the
error log file, where the System Administrator can review it.

Users should be instructed to inform the System Administrator
whenever problems that generate severity levels of 17 and over
occur. The System Administrator is responsible for resolving them
and tracking their frequency. The System Administrator should
monitor all problems that generate severity levels of 17 through 24.

System Administration Guide 11-7

SYBASE SQL Server Release 10.0 How SQL Server Responds to System Problems

If the problem has affected an entire database, the System
Administrator may have to use the Database Consistency Checker
(dbcc) to determine the extent of the damage. The dbcc may identify
some objects that have to be removed. It can repair some damage, but
the database may also have to be reloaded. dbcc is discussed in more
detail in Chapter 6, ‘‘Checking Database Consistency’’. Loading a user
database is discussed in Chapter 8, ‘‘Backing Up and Restoring User
Databases’’; loading system databases is discussed in Chapter 9,
‘‘Backing Up and Restoring the System Databases’’.

The next subsections discuss each severity level.

Levels 10 Through 18

Error messages with severity levels 10 through 16 are generated by
problems caused by user errors, and can always be corrected by the
user. Severity levels 17 and 18 do not terminate the user’s session.

Error messages with severity levels 17 or higher should be reported
to the System Administrator or Database Owner.

Level 10: Status Information

Messages with severity level 10 are not errors at all. They provide
additional information after certain commands have been executed
and typically do not display the message number or severity level.
For example, after a create database command has run, SQL Server
displays a message telling the user how much space has actually
been allocated for the new database.

Level 11: Specified Database Object Not Found

Messages with severity level 11 indicate that SQL Server can’t find an
object referenced in the command.

This is often because the user has made a mistake in typing the name
of a database object, because the user did not specify the object
owner’s name, or because of confusion about which database is
current. Check spelling of object names, use owner names if the
object is not owned by you or “dbo”, and make sure you’re in the
correct database.

Level 12: Wrong Datatype Encountered

Messages with severity level 12 indicate a problem with datatypes.
For example, the user may have tried to enter a value of the wrong

11-8 Diagnosing System Problems

How SQL Server Responds to System Problems SYBASE SQL Server Release 10.0

datatype into a column, or to compare columns of different (and
incompatible) datatypes.

To correct comparison problems, use the convert function with select.
For information on convert, see Volume 1 of the SQL Server Reference
Manual or the Transact-SQL User’s Guide.

Level 13: User Transaction Syntax Error

Messages with severity level 13 indicate that something is wrong
with the current user-defined transaction. For example, you may
have issued a commit transaction command without having issued a
begin transaction, or you may have tried to roll a transaction back to a
savepoint that has not been defined (sometimes there may be a
typing or spelling mistake in the name of the savepoint).

Severity level 13 can also indicate a deadlock, in which case the
deadlock victim’s process is rolled back. The user must restart his or
her command.

Level 14: Insufficient Permission to Execute Command

Messages with severity level 14 mean you don’t have the permission
necessary to execute the command or access the database object. You
can ask the owner of the database object, the owner of the database,
or the System Administrator to grant you permission to use the
command or object in question.

Level 15: Syntax Error in SQL Statements

Messages with severity level 15 indicate that the user has made a
mistake in the syntax of the command. The text of these error
messages includes the line numbers on which the mistake occurs,
and the specific word near which it occurs.

Level 16: Miscellaneous User Error

Error messages with severity level 16 reflect that the user has made
some kind of non-fatal mistake that doesn’t fall into any of the other
categories.

For example, the user may have tried to update a view in a way that
violates the restrictions. Another error that falls into this category is
unqualified column names in a command that includes more than
one table with that column name. SQL Server has no way to
determine which one the user intends. Check command syntax and
working database context.

System Administration Guide 11-9

SYBASE SQL Server Release 10.0 How SQL Server Responds to System Problems

➤ Note
The System Administrator should monitor occurrences of errors with severity

levels 17 through 24. Levels 17 and 18 are usually not reported in the error log.

Users should be instructed to notify the System Administrator when errors of

level 17 and 18 occur.

Level 17: Insufficient Resources

Error messages with severity level 17 mean that the command has
caused SQL Server to run out of resources (usually space for the
database on the disk) or to exceed some limit set by the System
Administrator.

These system limits include the number of databases that can be
open at the same time and the number of connections allowed to
SQL Server. They are stored in system tables, and can be checked
with the sp_configure command. See Chapter 12, ‘‘Fine-Tuning
Performance and Operations’’, for more information on changing
configuration variables.

The Database Owner can correct level 17 error messages indicating
that you have run out of space. Other level 17 error messages should
be corrected by the System Administrator.

Level 18: Non-Fatal Internal Error Detected

Error messages with severity level 18 indicate some kind of internal
software bug. However, the command runs to completion, and the
connection to SQL Server is maintained. An example of a situation
that generates severity level 18 is SQL Server detecting that a
decision about the access path for a particular query has been made
without a valid reason.

Since problems that generate such messages don’t keep users from
their work, they may have a tendency not to report them. Users
should be instructed to inform the System Administrator every time
an error message with this severity level (and higher levels) occurs,
so that the System Administrator can report them.

Severity Levels 19 Through 24

Fatal problems generate error messages with severity levels 19 and
higher. They break the user’s connection to SQL Server. To continue
working, the user must restart the client program.

11-10 Diagnosing System Problems

How SQL Server Responds to System Problems SYBASE SQL Server Release 10.0

Level 19: SQL Server Fatal Error in Resource

Error messages with severity level 19 indicate that some non-
configurable internal limit has been exceeded, and that SQL Server
cannot recover gracefully. You must reconnect to SQL Server. See
your System Administrator.

Level 20: SQL Server Fatal Error in Current Process

Error messages with severity level 20 mean that SQL Server has
encountered a bug in some command. The problem has affected only
the current process; it is unlikely that the database itself has been
damaged. Run dbcc diagnostics. You must reconnect to SQL Server.
See your System Administrator.

Level 21: SQL Server Fatal Error in Database Processes

Error messages with severity level 21 mean that SQL Server has
encountered a bug that affects all the processes in the current
database. However, it is unlikely that the database itself has been
damaged. Restart SQL Server and run the dbcc diagnostics. You must
reconnect to SQL Server. See your System Administrator.

Level 22: SQL Server Fatal Error: Table Integrity Suspect

Error messages with severity level 22 mean that the table or index
specified in the message has been damaged at some previous time by
a software or hardware problem.

The first step is to restart SQL Server and run dbcc to determine if
other objects in the database are also damaged. Whatever the report
from dbcc, it’s possible that the problem is in the cache only, and not
on the disk itself. If so, restarting SQL Server will fix the problem.

If restarting doesn’t help, the problem is on the disk as well.
Sometimes the problem can be solved by dropping the object
specified in the error message. For example, if the message tells you
that SQL Server has found a row with length 0 in a nonclustered
index, the table owner can drop the index and re-create it.

You must reconnect to SQL Server. See your System Administrator.

Level 23: SQL Server Fatal Error: Database Integrity Suspect

Error messages with severity level 23 mean that the integrity of the
entire database is suspect due to damage caused at some previous
time by a software or hardware problem. Restart SQL Server and run
the dbcc diagnostics.

System Administration Guide 11-11

SYBASE SQL Server Release 10.0 Backup Server Error Logging

Even when a level 23 error indicates that the whole database is
suspect, the damage may be confined to the cache, and the disk itself
may be fine. If so, restarting SQL Server with startserver will fix the
problem.

Level 24: Hardware Error or System Table Corruption

Error messages with severity level 24 reflect some kind of media
failure or (in rare cases) the corruption of sysusages. The System
Administrator may have to reload the database. It may be necessary
to call your hardware vendor.

Reporting Errors

When you report an error be sure to include the following
information:

• The message number, level number, and state number.

• Any numbers, database object types, or database object names
that are included in the error message.

• The context in which the message was generated—which
command was running at the time. You can help by providing a
hard copy of the backtrace from the error log.

Backup Server Error Logging

Like SQL Server, Backup Server creates an error log for you if it does
not already exist. The location of this log depends on how you start
the server:

• If you use startserver and the “runserver” file created by the
installation process, the backupserver command includes a flag that
specifies the location of the error log

• If you type the backupserver command from the operating system,
you can include the flag that specifies the location of the errorlog
(-e for UNIX and PC platforms; /errorfile in OpenVMS)

• If you do not include the error log flag, the error log is created in
the directory where you start Backup Server.

Backup Server error message are in the form:

MMM DD YYY: Backup Server:N.N.N.N: Message Text

11-12 Diagnosing System Problems

Killing Processes SYBASE SQL Server Release 10.0

Backup Server message numbers consist of 4 integers separated by
periods, in the form N.N.N.N. Messages in the form N.N.N are sent
by Open Server.

The four components of a Backup Server error message are
major.minor.severity.state.

• The major component generally indicates the functional area of
the Backup Server code where the error occurred:

- 1 - System errors

- 2 - Open Server event errors.

- 3 - Backup Server remote procedure call errors.

- 4 - I/O service layer errors.

- 5 - Network data transfer errors.

- 6 - Volume handling errors.

- 7 - Option parsing errors.

Major error categories 1-6 may result from Backup Server
internal errors or a variety of system problems. Major errors in
category 7 are almost always due to problems in the options you
specified to your dump or load command.

• minor numbers are assigned in order within a major category.

• severity is one of the following:

- 1 - Informational, no user action necessary.

- 2, 3 - An unexpected condition, possibly fatal to the session, has
occurred. Error may have occurred with any or all of usage,
environment or internal logic.

- 4 - An unexpected condition, fatal to the execution of the
Backup Server, has occurred. The Backup Server must exit
immediately.

• state codes have a one-to-one mapping to instances of the error
report within the code. If you need to contact Technical Support
about Backup Server errors, the state code helps determine the
exact cause of the error.

Killing Processes

A process is a task being carried out by SQL Server. Processes can be
initiated by a user giving a command, or by SQL Server itself. Each
process is assigned a unique process identification number when it

System Administration Guide 11-13

SYBASE SQL Server Release 10.0 Killing Processes

starts. These ID numbers, and other information about each process,
are stored in master..sysprocesses. You can see most of the information
by running the system procedure sp_who.

The kill command gets rid of an ongoing process. The most frequent
reason for killing a process is that it interferes with other users and
the person responsible for running it isn’t available. The process may
hold locks that block access to database objects, or there may be
many sleeping processes occupying the available user connections.
A System Administrator can kill processes that are:

• Waiting for an alarm, such as a waitfor command

• Waiting for network sends or receives

• Waiting for a lock

• Most running or runnable processes

SQL Server allows you to kill processes only if it can cleanly roll back
any uncompleted transactions and release all system resources that
are used by the process.

Running sp_who on a single-engine server shows the sp_who process
“running” and all other processes “runnable” or in one of the sleep
states. In multi-engine servers, there can be a “running” process for
each engine.

The following table shows the values that sp_who reports:

Status Condition Effects of kill Command

recv sleep waiting on a network read immediate

send sleep waiting on a network send immediate

alarm sleep waiting on an alarm, such as
waitfor delay "10:00"

immediate

lock sleep waiting on a lock acquisition immediate

sleeping waiting disk I/O, or some
other resource. Probably
indicates a process that is
running, but doing
extensive disk I/O

killed when it “wakes up”,
usually immediate; a few
sleeping processes do not
wake up, and require a Server
reboot to clear

runnable in the queue of runnable
processes

immediate

Table 11-2: Status Values Reported by sp_who

11-14 Diagnosing System Problems

Killing Processes SYBASE SQL Server Release 10.0

Only a System Administrator can issue the kill command: permission
to use it cannot be transferred.

The syntax is:

kill spid

You can kill only one process at a time. A kill command is not
reversible, and cannot be included in a user-defined transaction. spid
must be a numeric constant; you cannot use a variable. Here is some
sample output from sp_who:

 spid status loginame hostname blk dbname cmd
 ---- -------- -------- -------- --- ------ --------------
 1 recv sleep bird jazzy 0 master AWAITING COMMAND
 2 sleeping NULL 0 master NETWORK HANDLER
 3 sleeping NULL 0 master MIRROR HANDLER
 4 sleeping NULL 0 master AUDIT PROCESS
 5 sleeping NULL 0 master CHECKPOINT SLEEP
 6 recv sleep rose petal 0 master AWAITING COMMAND
 7 running sa helos 0 master SELECT
 8 send sleep daisy chain 0 pubs2 SELECT
 9 alarm sleep lily pond 0 master WAITFOR
 10 lock sleep viola cello 7 pubs2 SELECT

Processes 2-5 cannot be killed: they are system processes. The login
name NULL and the lack of hostname identify them as system

running actively running on one on
the Server engines

immediate

infected Server has detected serious
error condition; extremely
rare

kill command not
recommended. Server reboot
probably required to clear
process

background a process, such as a
threshold procedure, run by
SQL Server rather than by a
user process

immediate; use kill with
extreme care. Recommend a
careful check of sysprocesses
before killing a background
process

log suspend processes suspended by
reaching the last-chance
threshold on the log

killed when it “wakes up”: 1)
when space is freed in the log
by a dump transaction command
or 2) when an SA uses the
lct_admin function to wake up
“log suspend” processes

Status Condition Effects of kill Command

Table 11-2: Status Values Reported by sp_who (continued)

System Administration Guide 11-15

SYBASE SQL Server Release 10.0 Shutting Down Servers

processes. You will always see NETWORK HANDLER, MIRROR
HANDLER and CHECKPOINT SLEEP (or rarely, CHECKPOINT). AUDIT
PROCESS becomes activated if you enable auditing.

Processes 1, 6, 8, 9 and 10 can be killed, since they have the status
values “recv sleep”, “send sleep”, “alarm sleep” and “lock sleep”.

 In sp_who output, you cannot tell whether a process whose status is
“recv sleep” belongs to a user who is using SQL Server, but may be
pausing to examine the results of a command, or whether the process
indicates that a user has rebooted a PC or other terminal, and left a
stranded process.You can learn more about a questionable process by
querying the sysprocesses table for information. For example, this
query shows the host process ID and client software used by process
8:

select hostprocess, program_name
from sysprocesses

where spid = 8

 hostprocess program_name
 ----------- ----------------
 3993 isql

This query, plus the information about the user and host from the
sp_who results, provides additional information for tracking down
the process from the operating system level.

Using sp_lock to Examine Blocking Processes

In addition to sp_who, described above, the system procedure sp_lock
can help identify processes that are blocking other processes. If the
blk column in the sp_who report indicates that another process is
blocked waiting to acquire locks, sp_lock can display information
about the blocking process. For example, process 10 in the sp_who
output above is blocked by process 7. To see information about
process 7, execute:

sp_lock 7

For more information about locking in SQL Server, see Chapter 13,
‘‘Locking’’.

Shutting Down Servers

A System Administrator can shut down SQL Server or a Backup
Server with the shutdown command. The syntax is:

11-16 Diagnosing System Problems

Shutting Down Servers SYBASE SQL Server Release 10.0

shutdown [backup_server_name] [with {wait|nowait}]

The default for the shutdown command is with wait, that is, shutdown and
shutdown with wait do exactly the same thing.

Shutting Down SQL Server

If you do not give a server name, shutdown shuts down the SQL Server
you are using. When you issue a shutdown command, SQL Server:

• Disables logins, except for System Administrators

• Performs a checkpoint in each database, flushing pages that have
changed from memory to disk

• Waits for currently executing SQL statements or procedures to
finish

This minimizes the amount of work that automatic recovery must do
when you restart SQL Server.

The with no_wait option shuts down SQL Server immediately. User
processes are aborted, and recovery may take longer after a shutdown
with nowait. You can help minimize recovery time by issuing a
checkpoint command before you issue a shutdown with nowait command.

Shutting Down a Backup Server

To shut down a Backup Server, give the Backup Server’s name:

shutdown SYB_BACKUP

The default is with wait, so any dumps or loads in progress will
complete before the Backup Server process halts. Once you issue a
shutdown command, no new dump or load sessions can be started on
the Backup Server.

To see the names of Backup Servers accessible from your SQL Server,
execute sp_helpserver. Use the value in the name column in the shutdown
command. You can only shut down a Backup Server that is:

• Listed in sysservers on your SQL Server, and

• Listed in your local interfaces file.

Use sp_addserver to add a Backup Server to sysservers.

System Administration Guide 11-17

SYBASE SQL Server Release 10.0 Shutting Down Servers

Checking for Active Dumps and Loads

To see the activity on your Backup Server before executing a
shutdown command, run sp_who on the Backup Server:

SYB_BACKUP...sp_who

spid status loginame hostname blk cmd
------ -------- -------- ---------- --- ----------------
 1 sleeping NULL NULL 0 CONNECT HANDLER
 2 sleeping NULL NULL 0 DEFERRED HANDLER
 3 runnable NULL NULL 0 SCHEDULER
 4 runnable NULL NULL 0 SITE HANDLER
 5 running sa heliotrope 0 NULL

Using nowait on a Backup Server

The shutdown backup_server with nowait command shuts down the
Backup Server, regardless of current activity. Use it only in severe
circumstances. It can leave your dumps or loads in incomplete or
inconsistent states.

If you use shutdown...with nowait during a log or database dump, check
for the message indicating that the dump completed. If you did not
receive this message, or you are uncertain, your next dump should
be a dump database, not a transaction dump. This guarantees that you
will not be relying on possibly inconsistent dumps.

If you use shutdown with nowait during a load of any kind, and you did
not receive the message indicating that the load completed, you may
not be able to issue further load transaction commands on the database.
Be sure to run a full database consistency check (dbcc) on the database
before you use it. You may have to re-issue the full set of load
commands, starting with load database.

11-18 Diagnosing System Problems

Shutting Down Servers SYBASE SQL Server Release 10.0

System Administration Guide 12-1

12. Fine-Tuning Performance
and Operations

Introduction

The System Administrator or Database Owners may want to allocate
SQL Server resources to optimize performance. In part, this may
involve being able to estimate the size of tables and indexes in a
database, and the placement of these objects on separate physical
disks.

Once your application is up and running, the System Administrator
monitors its performance, and may want to customize and fine-tune
it. SQL Server provides software tools for these purposes. This
chapter explains:

• Setting query processing options with the set command

• Setting database options with the system procedure sp_dboption

• Monitoring SQL Server activity with sp_monitor

• Using update statistics to ensure that SQL Server makes the best use
of existing indexes

• Changing system variables with sp_configure and the reconfigure
command

• Placing objects on segments to improve performance

• Estimating the size of database objects

Tuning Queries and Stored Procedures

The query processing options allow you to instruct SQL Server to
handle queries and stored procedures in a variety of unusual ways.
They are turned on or off for the duration of the user’s work session
with the Transact-SQL set command. No permissions are required for
using the set command.

The set command syntax allows certain options to be grouped in one
command. The groups are:

set ansinull {on | off}

set ansi_permissions {on | off}

set arithabort [overflow | numeric_truncation]
{on | off}

set arithignore [overflow] {on | off}

12

12-2 Fine-Tuning Performance and Operations

Tuning Queries and Stored Procedures SYBASE SQL Server Release 10.0

set {chained, close on endtran, nocount, noexec,
parseonly, procid, self_recursion, showplan}
{on | off}

set char_convert {off | on [with {error | no_error}] |
charset [with {error | no_error}]}

set cursor rows number for cursor_name

set {datefirst number , dateformat format ,
language language }

set dup_in_subquery {on | off}

set fipsflagger {on | off}

set identity_insert [database .[owner .]] table_name
{on | off}

set offsets {select , from , order , compute , table ,
procedure , statement, param, execute} {on | off}

set quoted_identifier {on | off}

set role {"sa_role" | "sso_role" | "oper_role"}
{on | off}

set {rowcount number , textsize number }

set statistics {io, time} {on | off}

set string_rtruncation {on | off}

set transaction isolation level {1 | 3}

For example, this statement causes SQL Server to return a
description of the processing plan for each query, but not execute it:

set showplan, noexec on

This statement causes SQL Server to stop processing each query after
it returns the first ten rows:

set rowcount 10

See Volume 1 of the SQL Server Reference Manual for more
information and examples.

Here are brief explanations of the set options (in alphabetic order):

• ansinull – determines whether or not evaluation of NULL-valued
operands in SQL equality (=) or inequality (!=) comparisons or
aggregate functions, also called set functions, is ANSI-compliant.
By default ansinull is set off. This option does not affect how SQL
Server evaluates NULL values in other kinds of SQL statements,
such as create table.

System Administration Guide 12-3

SYBASE SQL Server Release 10.0 Tuning Queries and Stored Procedures

• ansi_permissions – determines what types of permissions SQL
Server requires to execute update and delete statements. By default
ansi_permissions is set off. update statements require update
permission on the columns being changed. delete statements
require delete permission on the table.

Turn ansi_permissions on to perform additional permissions checks
required for ANSI compliance. In addition to the existing
permissions requirements, both update and delete statements
require select permission on all columns in the where clause; update
statements require select permission on columns on the right side
of the set clause.

• arithabort – determines how SQL Server behaves when an
arithmetic error occurs. The two arithabort options, arithabort
arith_overflow and arithabort numeric_truncation, handle different types
of arithmetic errors. You can set each option independently, or set
both options with a single set arithabort on or set arithabort off
statement.

- arithabort arith_overflow – specifies behavior following a divide-by-
zero error or a loss of precision during either an explicit or an
implicit datatype conversion. This type of error is considered
serious. The default setting, arithabort arith_overflow on, rolls back
the entire transaction or batch in which the error occurs. If you
set arithabort arith_overflow off, SQL Server aborts the statement that
causes the error but continues to process other statements in the
transaction or batch.

- arithabort numeric_truncation – specifies behavior following a loss of
scale by an exact numeric type during an implicit datatype
conversion. (When an explicit conversion results in a loss of
scale, the results are truncated without warning.) The default
setting, arithabort numeric_truncation on, aborts the statement that
causes the error but continues to process other statements in the
transaction or batch. If you set arithabort numeric_truncation off,
SQL Server truncates the query results and continues
processing.

• arithignore arith_overflow – determines whether SQL Server displays
a message after a divide-by-zero error or a loss of precision. The
default setting, off, displays a warning message after these errors.
Setting arithignore arith_overflow on suppresses warning messages
after these errors. The optional arith_overflow keyword can be
omitted without any effect.

12-4 Fine-Tuning Performance and Operations

Tuning Queries and Stored Procedures SYBASE SQL Server Release 10.0

➤ Note
The arithabort and arithignore options have been redefined for Release 10.0. If

your application is based on a previous SQL Server release use these options,

examine them to be sure they still produce the desired effect.

• chained – begins a transaction just before the first data retrieval or
modification statement at the beginning of a session and after a
transaction ends. In chained mode, SQL Server implicitly executes
a begin transaction before the following statements: delete, fetch, insert,
open, select, and update. You cannot execute set chained within a
transaction.

• char_convert – turns off and on character set conversion between
SQL Server and a client. See Chapter 13 for a full discussion of
this option.

• close on endtran – causes SQL Server to close all cursors opened
within a transaction at the end of that transaction. A transaction
ends by using either the Transact-SQL commit or the rollback
statement.

• cursor rows – causes SQL Server to return the number of rows for
each cursor fetch request from a client application. You can set the
cursor rows option for a cursor whether it is open or closed.

• datefirst – sets the first weekday to a number from one through
seven. The us_english default is 1 (Sunday).

• dateformat – sets the order of the date parts month/day/year for
entering datetime or smalldatetime data. Valid arguments are mdy,
dmy, ymd, ydm, myd, or dym. The us_english default is mdy.

• dup_in_subquery – controls whether a subquery using an in clause
returns duplicate values. The default is off; duplicate rows are not
returned. Prior to Release 10.0, SQL Server returned a row for
each matching row in the subquery. ANSI specifies removing
duplicate values from the result set. This option is provided as a
workaround until you can re-write your queries for 10.0
behavior; it will not be supported in future releases.

• fipsflagger – determines whether SQL Server displays a warning
message when Transact-SQL extensions to SQL are used. By
default, SQL Server does not tell you when you use non-ANSI
SQL.

• identity_insert – determines whether inserts into a table’s IDENTITY
column are allowed. (Note that updates to an IDENTITY column

System Administration Guide 12-5

SYBASE SQL Server Release 10.0 Tuning Queries and Stored Procedures

are never allowed.) This option can be used only with base tables.
It cannot be used with views or set within a trigger. Setting
identity_insert on allows the table owner, Database Owner, or a
System Administrator to insert a value into the IDENTITY column.

• language – is the official name of the language that displays system
messages. The language must be available on the server. The
sybinit installation program sets the default language.

• nocount – turns off the display of the number of “rows affected”
from a query that returns rows. The global variable @@rowcount is
updated even when nocount is on.

• noexec – compiles each query into a query tree but does not
execute it. noexec is often used with showplan and statistics io. Once
noexec is turned on, no subsequent commands are executed
(including other set commands) until noexec is turned off.

• offsets – returns the offset (position in relation to the beginning of
the query) of specified keywords in Transact-SQL statements. The
keyword list is a comma-separated list that can include any of the
following Transact-SQL reserved words: select, from, order, compute,
table, procedure, statement, param, and execute. This option is meant to
be used in Open Client DB-Library.

• parseonly – checks the syntax of each query and returns any error
messages, without generating a sequence tree, compiling, or
executing the query. It returns offsets if the offset option is set on
and there are no errors. parseonly should not be used inside a
stored procedure or trigger.

• procid – returns the ID number of the stored procedure to Open
Client DB-Library (not to the user) before sending rows
generated by that stored procedure.

• quoted_identifier – determines whether SQL Server recognizes
delimited identifiers. By default, quoted_identifier is set off and all
identifiers must conform to the rules for valid identifiers. If you
set quoted_identifier on, you can use table, view, and column names
that begin with a non-alphabetic character, include characters
that would not otherwise be allowed, or are reserved words. You
must enclose the identifiers within double quotation marks.
Delimited identifiers cannot exceed 28 bytes, cannot be used as
parameters to system procedures, cannot be used with bcp, and
may not be recognized by all front-end products.

When quoted_identifier is on, all character strings enclosed within
double quotes are treated as identifiers. Use single quotes
around character or binary strings.

12-6 Fine-Tuning Performance and Operations

Tuning Queries and Stored Procedures SYBASE SQL Server Release 10.0

• role – turns the specified role on or off during the current session.
When you log in, all roles granted to you are automatically
enabled. Use set role to turn any of these options off or back on
again. For example, if you have been granted the System
Administrator role, you assume the identity of Database Owner
within the current database. If you wish to assume your “real”
user identity, execute set role “sa_role” off. If you are not a user in the
current database, and if there is no “guest” user, you will be
unable to turn off sa_role, because there is no server user ID for
you to assume.

The available roles are sa_role, sso_role, and oper_role.

• rowcount – causes SQL Server to stop processing the query after
the specified number of rows is returned. To turn this option off
so that all rows are returned, use this command:

set rowcount 0

• self_recursion – determines whether or not SQL Server allows a
trigger to cause itself to fire again (called self recursion). By
default, SQL Server does not allow self recursion in triggers. You
can turn this option on only for the duration of a current client
session; its effect is limited by the scope of the trigger or stored
procedure that sets it. For example, if the trigger that sets
self_recursion on returns or causes another trigger to fire, this option
reverts to off.

• showplan – generates a description of the processing plan for the
query and immediately processes it unless noexec is set. showplan is
often used in conjunction with statistics io. showplan allows you to
see whether the query uses the indexes that are in place; statistics
io gives you an idea of the effectiveness of the indexes. (If the
indexes are not being used, you may want to issue the update
statistics command, discussed later in this chapter.) showplan
should not be used inside a stored procedure or trigger.

• statistics io – displays the number of table scans, logical accesses
(cache reads), and physical accesses (disk reads) for each table
referenced in the statement. It also displays the number of pages
written (including pages in the transaction log). If the query is
being run efficiently, the number of scans should be small. If the
cache is being used well, the number of disk reads should be
small in relation to the number of cache reads. Turning this option
on slows down execution, so it should not be used all the time.

• statistics time – displays the CPU time it took to parse and compile
each command. It also displays the CPU time it took to execute

System Administration Guide 12-7

SYBASE SQL Server Release 10.0 Tuning Queries and Stored Procedures

each step of the command. CPU times are given in units of ticks,
which are machine dependent.

• string_rtruncation – determines if SQL Server raises an exception
error when an insert or update truncates a char or varchar string. If
the truncated characters consist only of spaces, no exception is
raised. The default setting, off, does not raise the exception error
and the character string is silently truncated.

• textsize – specifies the size in bytes of text or image type data to be
returned with a select statement. The @@textsize global variable
stores the current setting.

• transaction isolation level – causes SQL Server to automatically apply a
holdlock to all select operations in a transaction when set to isolation
level 3. By default, SQL Server’s transaction isolation level is 1
which allows shared locks on data. You cannot change an isolation
level within a transaction.

The set options can be divided into these categories:

• parseonly, noexec, showplan, rowcount, textsize and nocount control the
way a query is executed. It doesn’t make sense to set both parseonly
and noexec to on.

The default setting for rowcount is 0 (return all rows) and for
textsize is 32768 (32K). To restore default behavior after changing
these settings, set the value to 0. (Some client software sets textsize
to other values as part of logging in to SQL Server.)

The default for parseonly, noexec, showplan and nocount is off.

• The statistics io and statistics time options display performance
statistics after each query. The default setting for these options is
off.

• arithabort and arithignore determine how to handle arithmetic errors.

• datefirst, dateformat, and language affect date functions, date order,
and message display. In the default language, us_english, datefirst
is 1 (Sunday), dateformat is mdy, and messages are displayed in
us_english. set language implies that SQL Server should use the
first weekday and date format of the language it specifies, but it
will not override an explicit set datefirst or set dateformat command
issued earlier in the current session.

• Open Client DB-Library uses offsets and procid to interpret results
from SQL Server. The default setting for these options is on.

• char_convert controls character set conversion between SQL Server
and a client.

12-8 Fine-Tuning Performance and Operations

Tuning Queries and Stored Procedures SYBASE SQL Server Release 10.0

• cursor rows and close on endtran affect the way SQL Server handles
cursors. The default setting for cursor rows with all cursors is 1. The
default setting for close on endtran is off.

• identity_insert allows or prohibits inserts that affect a table’s
IDENTITY column.

• chained and transaction isolation level allow SQL Server to handle
ANSI-compliant transactions.

• self_recursion allows a trigger to fire as a result of the data
modification of the trigger itself. (The sp_configure variable nested
trigger must also be set on.) The default setting for self_recursion is
off.

• string_rtruncation on causes SQL Server to raise a SQLSTATE
exception error when truncating a char or nchar string.

• ansinull on causes SQL Server to issue warning when eliminating
nulls from aggregate functions and SQL equality (=) or inequality
(!=) comparisons.

• fipsflagger on causes SQL Server to flag the use of non-ANSI SQL.

• role activates and deactivates roles for the current session.

If you use the set command inside a trigger or stored procedure, the
option reverts to its former setting after the trigger or procedure
executes.

All set options except showplan and char_convert take effect
immediately. showplan takes effect in the following batch. Here is an
example using set show plan on:

set showplan on
select * from publishers
go

pub_id pub_name city state
------ ------------- ---------- -----
0736 New Age Books Boston MA
0877 Binnet & Hardley Washington DC
1389 Algodata Infosystems Berkeley CA

(3 rows affected)

If the two statements are put in separate batches, here’s what
happens:

set showplan on
go
select * from publishers
go

System Administration Guide 12-9

SYBASE SQL Server Release 10.0 The Database Options

STEP 1
the type of query is SELECT
FROM TABLE
publishers
nested iteration
Table Scan

pub_id pub_name city state
------ ------------- ---------- -----
0736 New Age Books Boston MA
0877 Binnet & Hardley Washington DC
1389 Algodata Infosystems Berkeley CA

(3 rows affected)

The Database Options

The system procedure sp_dboption changes settings for an entire
database. These options remain in effect until they are changed. The
set commands described above, which remain active only for a
session, or for the duration of a stored procedure. Configuration
variables, described later in this chapter, affect the entire server.

The procedure:

• Displays a list of the settable database options when it is used
without a parameter

• Changes a database option when used with parameters

You can only change options for user databases, you cannot change
options for the master database. However, to change a database
option in a user database (or to display a list of the database options),
sp_dboption must be executed while using the master database.

The syntax for sp_dboption is:

sp_dboption [dbname, optname , {true | false}]

To make an option or options take effect for every new database,
change the option in the model database.

Listing the Database Options

All users with access to the master database can execute sp_dboption
with no parameters in order to display a list of the database options.
The report from sp_dboption looks like this:

sp_dboption

12-10 Fine-Tuning Performance and Operations

The Database Options SYBASE SQL Server Release 10.0

Settable database options.

abort tran on log full
allow nulls by default
auto identity
dbo use only
ddl in tran
no chkpt on recovery
no free space acctg
read only
select into/bulkcopy
single user
trunc log on chkpt
trunc. log on chkpt.

Here’s what the database options mean:

• abort tran on log full determines the fate of a transaction that is
running when the last-chance threshold is crossed. The default
value is false, meaning that the transaction is suspended and is
awakened only when space has been freed. If you change the
setting to true, all user queries that need to write to the transaction
log are killed until space in the log has been freed.

• Setting allow nulls by default to true changes the default nulltype of a
column from not null to null, in compliance with the ANSI standard.
The Transact-SQL default value for a column is not null, meaning
that null values are not allowed in a column unless null is specified
in the column definition.

• While the auto identity option is true, a 10-digit IDENTITY column is
defined in each new table that is created without specifying either
a primary key, a unique constraint, or an IDENTITY column. The
column is not visible when you select all column with the select *
statement. To retrieve it, you must explicitly mention the column
name, SYB_IDENTITY_COL, in the select list.

• While the dbo use only option is set on (or true), only the Database
Owner can use the database.

System Administration Guide 12-11

SYBASE SQL Server Release 10.0 The Database Options

• Setting ddl in tran option is to true allows the following commands
to be used inside a user-defined transaction:

Data definition statements must lock system tables for the
duration of a transaction, and can result in performance
problems.

• The following commands cannot be used inside a user-defined
transaction under any circumstances:

• no free space acctg suppresses free space accounting and execution
of threshold actions for the non-log segments. This speeds
recovery time because the free-space counts will not be
recomputed for those segments. It disables updating the rows-
per-page value stored for each table, so system procedures that
estimate space usage may report inaccurate values.

• The no chkpt on recovery option is set on (true) when an up-to-date
copy of a database is kept. In these situations, there is a “primary”
and a “secondary” database. Initially, the primary database is
dumped and loaded into the secondary database. Then, at
intervals, the transaction log of the primary database is
automatically dumped and loaded into the secondary database.

If this option is set off (false)—the default condition—a check-
point record is added to the database after it is recovered due to
restarting SQL Server. This checkpoint, which ensures that the
recovery mechanism won’t unnecessarily be re-run, changes the
sequence number on the database. If the sequence number on
the secondary database has changed, a subsequent dump of the
transaction log from the primary database could not be loaded
into it.

alter table create table drop rule
create default create trigger drop table
create index create view drop trigger
create procedure drop default drop view
create rule drop index grant
create schema drop procedure revoke

Table 12-1: DDL Commands Allowed in Transactions

alter database load database truncate table
create database load transaction update statistics
disk init reconfigure
drop database select into

Table 12-2: DDL Commands Not Allowed in Transactions

12-12 Fine-Tuning Performance and Operations

The Database Options SYBASE SQL Server Release 10.0

Turning on this option for the secondary database causes it not
to get a checkpoint from the recovery process, so that subsequent
transaction log dumps from the primary database can be loaded
into it.

• The read only option means that users can retrieve data from the
database, but can’t modify anything.

• The select into/bulkcopy option must be set on in order to perform
operations that do not keep a complete record of the transaction
in the log:

- To use the writetext utility

- To select into a permanent table

- To do a “fast” bulk copy with bcp. “Fast” bcp is used by default
on tables which do not have indexes.

SQL Server performs minimal logging for these commands,
recording only page allocations and de-allocations, but not the
actual changes that are made on the data pages.

You do not have to set the select into/bulkcopy option on in order to
select into a temporary table, since tempdb is never recovered. The
option does not need to be set in order to run bcp on a table that
has indexes, because inserts are logged.

After you have run a select into command or performed a bulk
copy in a database, you won’t be able to perform a regular trans-
action log dump. Once you have made minimally-logged
changes to your database, you must perform a dump database since
changes would not be recoverable from transaction logs.

Just setting the select into/bulkcopy option doesn’t block log
dumping, but making minimally-logged changes to data does
block the use of a regular dump transaction. You can still use dump
transaction...with no_log and dump transaction...with truncate_only,
however.

By default, the select into/bulkcopy option is off in newly created
databases. To change the default situation, turn this option on in
the model database.

• When single user is set to TRUE, only one user at a time can access
the database.

• The trunc log on chkpt option means that the transaction log is
truncated (committed transactions are removed) every time the
checkpoint checking process occurs (usually more than once per

System Administration Guide 12-13

SYBASE SQL Server Release 10.0 The Database Options

minute). When the Database Owner runs checkpoint manually,
however, the log is not truncated.

It may be useful to turn this option on while doing development
work during which backups of the transaction log are not
needed. If this option is off (the original default condition) and
the transaction log is never dumped, the transaction log
continues to grow and you may run out of space in your
database.

When the trunc log on chkpt option is on, you cannot dump the
transaction log because changes to your data are not recoverable
from transaction log dumps. In this situation, issuing the dump
transaction command produces an error message instructing you
to use dump database instead.

By default, the trunc log on chkpt option is off in newly created
databases. To change the default situation, turn this option on in
the model database.

◆ WARNING!
If you turn trunc log on chkpt on in model, and need to load a set of database
and transaction logs into a newly created database, be sure to turn the
option off in the new database.

For a report on which database options are set in a particular
database, execute the system procedure sp_helpdb in that database.

Setting the Database Options

Only a System Administrator or Database Owner can change a user
database’s options by executing sp_dboption. You must be using the
master database to execute sp_dboption. Then, in order for the change
to take effect, you must issue the checkpoint command while using the
database for which the option was changed.

Remember that none of the master database’s options can be
changed.

Here’s how you’d use sp_dboption to change the pubs2 database to read
only:

use master

sp_dboption pubs2, "read only", true

Then run the checkpoint command in the database that was changed:

12-14 Fine-Tuning Performance and Operations

Monitoring SQL Server Activity SYBASE SQL Server Release 10.0

use pubs2

checkpoint

For the optname parameter, SQL Server understands any unique
string that is part of the option name. To set the trunc log on chkpt
option, you can issue this command:

use master

sp_dboption pubs2, trunc, true

If you enter a value for optname that is ambiguous, an error message
is displayed. For example, two of the database options are dbo use only
and read only. Using “only” for the optname parameter generates a
message because it matches both names. The complete names that
match the string supplied are printed out so you can see how to make
the optname more specific.

More than one database option can be set on at a time. You cannot
change database options inside a user-defined transaction.

Monitoring SQL Server Activity

SQL Server keeps track of how much work it has done in a series of
pre-defined global variables, distinguished from local variables by
having two @ signs preceding their names, for example, @@error,
@@rowcount.

Executing sp_monitor displays the current values of some of these
global variables, and how much they have changed since the last
time the System Administrator ran the procedure. You can also
query the global variables directly.

The sp_monitor procedure takes no parameters. Here’s how you use it,
and a sample report from it:

sp_monitor

System Administration Guide 12-15

SYBASE SQL Server Release 10.0 Monitoring SQL Server Activity

last_run current_run seconds
-------------------- ------------------- -------
Jan 29 1993 10:11AM Jan 29 1993 10:17AM 314

cpu_busy io_busy idle
---------------- --------- ---------------
4250(215)-68% 67(1)-0% 109(100)-31%

packets_received packets_sent packet_errors
---------------- ------------ ------------
781(15) 10110(9596) 0(0)

total_read total_write total_errors connections
---------- ----------- ------------ -----------
394(67) 5392(53) 0(0) 15(1)

For each column, the statistic is printed in the form number(number)
or number(number)-number%.

The first number refers to the number of seconds (for cpu_busy,
io_busy, and idle) or the total number (for the other variables) since
SQL Server was restarted. The number in parentheses refers to the
number of seconds or total number since the last time sp_monitor was
run. The percentage is the percent of time since sp_monitor was last
run.

For example, this report shows cpu_busy as 4250(215)-68%. This
means that the CPU has been busy 4250 seconds since SQL Server
was last started up and 215 seconds since sp_monitor was last run. The
68% means that the CPU has been busy 68% of the time since
sp_monitor was last run.

For the total_read variable, the value 394(67) means there have been
394 disk reads since SQL Server was restarted, 67 of them since the
last time sp_monitor was run.

Here are the columns in the sp_monitor report, the equivalent global
variables, if any, and their meanings:

Column Name Variable Meaning

last_run The clock time at which the sp_monitor
procedure was last run.

current_run The current clock time.

seconds The number of seconds since sp_monitor
was last run.

Table 12-3: Meaning of Columns in an sp_monitor Report

12-16 Fine-Tuning Performance and Operations

Monitoring SQL Server Activity SYBASE SQL Server Release 10.0

The global variables report time in machine ticks, while sp_monitor
reports seconds of CPU time. The global variable @@timeticks reports
the number of microseconds per tick on your platform.

Here’s how to query a global variable directly:

select @@cpu_busy

 42506

There are some other global variables, whose values are not reported
by sp_monitor. They are:

• @@char_convert – contains 0 if character set conversion not in
effect. Contains 1 if character set conversion is in effect.

• @@client_csname – client’s character set name. Set to NULL if client
character set has never been initialized; otherwise, it contains the
name of the most recently used character set.

cpu_busy @@cpu_busy The number of seconds in CPU time that
SQL Server’s CPU was doing SQL Server
work.

io_busy @@io_busy The number of seconds in CPU time that
SQL Server has spent doing input and
output operations.

idle @@idle The number of seconds in CPU time that
SQL Server has been idle.

packets_received @@pack_received The number of input packets read by SQL
Server.

packets_sent @@pack_sent The number of output packets written by
SQL Server.

packet_errors @@packet_errors The number of errors detected by SQL
Server while reading and writing packets.

total_read @@total_read The number of disk reads by SQL Server.

total_write @@total_write The number of disk writes by SQL Server.

total_errors @@total_errors The number of errors detected by SQL
Server while reading and writing.

connections @@connections The number of logins or attempted logins
to SQL Server.

Column Name Variable Meaning

Table 12-3: Meaning of Columns in an sp_monitor Report (continued)

System Administration Guide 12-17

SYBASE SQL Server Release 10.0 Monitoring SQL Server Activity

• @@client_csid – client’s character set id. Set to NULL if client
character set has never been initialized. Otherwise, it contains the
most recently used client character set’s id from syscharsets.

• @@error – contains the last error number generated by the system.
The @@error global variable is commonly used to check the error
status (succeeded or failed) of the most recently executed
statement. A statement such as:

if @@error != 0 return

causes an exit if an error occurs.

• @@identity - last value inserted into an IDENTITY column by an
insert or select into statement.

• @@isolation - current isolation level of the Transact-SQL program.
@@isolation takes the value of the active level (1 or 3).

• @@langid – defines the local language id of the language currently
in use (specified in syslanguages.langid).

• @@language – defines the name of the language currently in use
(specified in syslanguages.name).

• @@maxcharlen – maximum length of multibyte character in SQL
Server’s character set.

• @@max_connections – the maximum number of simultaneous
connections that can be made with SQL Server in this computer
environment. The user can configure SQL Server for fewer
connections with sp_configure.

• @@ncharsize – average length of a national character.

• @@nestlevel – nesting level of current execution (initially zero).
Each time a stored procedure or trigger calls another stored
procedure or trigger, the nesting level is incremented. If the
maximum of 16 is exceeded, the transaction aborts.

• @@procid – contains the stored procedure ID of the currently
executing procedure.

• @@rowcount – contains the number of rows affected by the last
command.

• @@servername – the name of this SQL Server. To define a server
name, a System Security Officer must run sp_addserver and then re-
start the server.

• @@spid - server process ID number of the current process.

• @@sqlstatus - contains status information resulting from the last
fetch statement.

12-18 Fine-Tuning Performance and Operations

update statistics SYBASE SQL Server Release 10.0

• @@textsize – the maximum size in bytes of text or image data to be
returned with a select statement. The default value depends on
the client software, the isql default is 32K bytes. Can be changed
on a per-session basis with set textsize.

• @@thresh_hysteresis - change in free space required to activate a
threshold.

• @@timeticks – the number of microseconds per tick.

• @@tranchained - current transaction mode of the Transact-SQL
program.

• @@trancount – contains the number of currently active
transactions for the current user.

• @@transtate - current state of a transaction after a statement
executes.

• @@version – contains the version string of the current version of
SQL Server.

Any user can query the global variables. However, only System
Administrators can execute sp_monitor. The procedure updates a table
in the master database called spt_monitor.

update statistics

The update statistics command helps SQL Server make the best
decisions about which indexes to use when it processes a query, by
providing information about the distribution of the key values in the
indexes. update statistics is automatically run when you create or
recreate an index on a table that already contains data. It can be used
when a large amount of data in an indexed column has been added,
changed, or deleted. The crucial element is that the optimization of
your queries depends on the accuracy of the distribution steps, and
if there is significant change in the key values in your index, you
should re-run update statistics on that index.

Only the table owner or System Administrator can issue the update
statistics command.

Its syntax is:

update statistics table_name [index_name]

If you do not specify an index name, the command updates the
distribution statistics for all the indexes in the specified table. Giving
an index name updates statistics for that index only.

System Administration Guide 12-19

SYBASE SQL Server Release 10.0 Resetting the Configuration Variables

Try to run update statistics at a time when the tables you need to specify
are not heavily used. update statistics acquires locks on the tables and
indexes as it reads the data.

You can find the names of indexes by using the sp_helpindex system
procedure. This procedure takes a table name as a parameter.

To list the indexes for the authors table, and then update the statistics
for all of the indexes in the table, type:

sp_helpindex authors

update statistics authors

To update the statistics only for the index on the au_id column, type:

update statistics authors auidind

Since Transact-SQL does not require index names to be unique in a
database, you must give the name of the table with which the index
is associated.

After running update statistics, run sp_recompile on the table so that
triggers and procedures that use the indexes will use the new
distribution:

sp_recompile authors

Resetting the Configuration Variables

The configuration variables control various aspects of SQL Server’s
memory allocation and performance. The System Administrator or
System Security Officer can reset these configuration variables in
order to fine-tune performance and refine storage allocation. In the
absence of intervention by the System Administrator, SQL Server
supplies default values for all these variables that are reasonable
given the following assumptions:

• At least 10 megabytes of RAM dedicated to SQL Server

• An application in which there is a great deal of update activity

• An application in which a relatively small number of stored
procedures are used repeatedly

If your application differs significantly from these assumptions, you
should reset the configuration variables immediately after
installation. System variables are set by:

• Executing the system procedure sp_configure, which updates the
values field of the system table master..sysconfigures.

12-20 Fine-Tuning Performance and Operations

Resetting the Configuration Variables SYBASE SQL Server Release 10.0

• Issuing the reconfigure command. Note that the allow updates
configuration variable requires reconfigure with override, since this
option allows you to edit system tables directly.

• Restarting SQL Server for most of the configuration variables.
Only a few of the configuration variables are dynamic, meaning
that they can be changed using only sp_configure and reconfigure,
and do not require a server reboot.

The sysconfigures and syscurconfigs Tables

The master..sysconfigures and master..syscurconfigs system tables store
configuration variables. The value field contains the value that has
been set by executing sp_configure (though it does not reflect the value
SQL Server is using if reconfigure was not run).

The status field of sysconfigures cannot be updated by the user. Status
1 means “dynamic,” indicating that new values for these
configuration variables take effect immediately when the reconfigure
command is issued. The rest of the configuration variables—those
with status “0”—take effect only after the reconfigure command is
issued and SQL Server is next restarted.

The sysconfigures table does not reflect the values currently being
used by SQL Server, for two reasons:

• The System Administrator may have updated sysconfigures by
issuing sp_configure commands, but not issued the reconfigure
command and/or not restarted SQL Server, or

• The default for many values in sysconfigures is 0, which indicates
that SQL Server calculates default values for that variable.

The run values are stored in the “phantom” system table
syscurconfigs. This table is created dynamically when it is
queried.The system procedure sp_configure can perform a join on
sysconfigures and syscurconfigs to display the values that are currently
in use—the run values—and the configured values.

Changing the Configuration Variables: sp_configure and reconfigure

The system procedure sp_configure displays and resets configuration
values. You can use it in these ways:

• If you use it without any arguments, it displays all the
configuration variables, their minimum and maximum values,

System Administration Guide 12-21

SYBASE SQL Server Release 10.0 Resetting the Configuration Variables

the configuration value, and the “run value”, the value that
SQL Server is currently using.

• If you give a configuration variable name, it prints the values for
that variable. You do not have to type the entire name, you only
have to type enough characters to make your input unique.

• If you give a non-unique fragment of a variable name, it prints a
list of all of the variable names that match the fragment.

• If you give a variable name and a value, it resets the configuration
value of that option in the system tables. For nearly all of the
configuration options, you must run reconfigure and restart the
server to make the new values to take effect.

The sp_configure syntax is:

sp_configure [optname [, optvalue]]

Any user can execute sp_configure with the first parameter (optname) or
with no parameters. System Administrators can execute sp_configure
with both parameters, except for the password expiration interval, audit
queue size, allow updates, and remote access variables, for which you must
be a System Security Officer.

The sample output below shows the kind of information that
sp_configure prints when you execute it with no parameters. The
values that it prints will vary, depending on your platform and on
what values you have already changed.

Configuration Variable Minimum Maximum Config.
Value

Run
Value

recovery interval1 1 32767 0 5
allow updates1 0 1 0 0
user connections2 5 2147483647 0 25
memory3 varies 2147483647 0 varies
open databases 5 2147483647 0 12
locks 5000 2147483647 0 5000
open objects 100 2147483647 0 500
procedure cache 1 99 0 20
fill factor 0 100 0 0
1. Dynamic options, reset by running reconfigure. All other options require

reconfigure, plus shutting the server down and restarting it.
2. The actual maximum value of user connections is stored in @@max_connections.

The maximum number of network connections and open devices available to
SQL Server vary according to platform and operating system.

3. The minimum and run_value values for this option vary according to platform.

Table 12-4: sp_configure Output

12-22 Fine-Tuning Performance and Operations

Resetting the Configuration Variables SYBASE SQL Server Release 10.0

The config_value column of the report contains the value to which the
configuration variable has been set with sp_configure. It changes after
you execute sp_configure. This is the value in sysconfigures.value.

time slice 50 1000 0 100
database size 2 10000 0 2
tape retention 0 365 0 0
recovery flags 0 1 0 0
nested triggers1 0 1 1 1
devices 4 256 0 10
remote access1 0 1 1 1
remote logins 0 2147483647 0 20
remote sites 0 2147483647 0 10
remote connections 0 2147483647 0 20
pre-read packets 0 2147483647 0 3
upgrade version1 0 2147483647 1001 1001
default sortorder id 0 255 50 50
default language1 0 2147483647 0 0
language in cache 3 100 3 3
max online engines 1 32 1 1
min online engines 1 32 1 1
engine adjust interval 1 32 0 0

cpu flush1 1 2147483647 200 200
i/o flush1 1 2147483647 1000 1000
default character set id 0 255 1 1
stack size 20480 2147483647 0 28672
password expiration interval1 0 32767 0 0
audit queue size 1 65535 100 100
additional netmem 0 2147483647 0 0
default network packet size 512 524288 0 512
maximum network packet size 512 524288 0 512
extent i/o buffers 0 2147483647 0 0
identity burning set factor 1 9999999 5000 5000

Configuration Variable Minimum Maximum Config.
Value

Run
Value

1. Dynamic options, reset by running reconfigure. All other options require
reconfigure, plus shutting the server down and restarting it.

2. The actual maximum value of user connections is stored in @@max_connections.
The maximum number of network connections and open devices available to
SQL Server vary according to platform and operating system.

3. The minimum and run_value values for this option vary according to platform.

Table 12-4: sp_configure Output (continued)

System Administration Guide 12-23

SYBASE SQL Server Release 10.0 Resetting the Configuration Variables

The run_value column contains the value SQL Server is using. It
changes after you run the reconfigure command and restart the server.
This is the value in syscurconfigs.value.

The report displayed by sp_configure is partially constructed from a
table called spt_values, which is a “work table” in the master database
that stores records that refer to locks, permissions, configuration
variables, and other system information.

To change the current values of the configuration variables, execute
sp_configure with its parameters. The optname parameter is the name of
the configuration variable, as given in the name column of the report
from sp_configure. You can use the first few characters of the name, as
long as they provide a unique pattern. The optvalue is its new value,
which must be equal to or greater than the minimum and less than or
equal to maximum given in the report from sp_configure. For the
options that are on-off toggles (allow updates, recovery flags, nested triggers
and remote access) the optvalue is either “1” for “yes”, or “0” for “no”.

Here is how you would decrease the number of user connections
(perhaps in order to save memory):

sp_configure "user conn", 20

After executing sp_configure, run the reconfigure command.

The reconfigure Command

The syntax of reconfigure is:

reconfigure [with override]

Only a System Administrator can execute the reconfigure command.

When the System Administrator issues the reconfigure command,
SQL Server checks to make sure that the new values in sysconfigures
are acceptable and reasonable.

User-supplied values that seem unreasonable to SQL Server cause it
to abort the reconfigure command and display a warning message. The
System Administrator can then re-issue sp_configure with a new value,
or re-issue the reconfigure command with the with override clause, which
causes SQL Server to accept whatever values the System
Administrator supplies.

12-24 Fine-Tuning Performance and Operations

Resetting the Configuration Variables SYBASE SQL Server Release 10.0

➤ Note
The reconfigure command performs certain simple sanity checks on

configuration values. It is possible, however, for you to allocate so much

memory to SQL Server that it cannot be rebooted, or allocate so much memory

for certain memory uses that there is little or no room left in the server for page

and procedure buffers. You can always restore SQL Server’s default

configuration variables, and execute your configuration commands again.

One of the configuration variables, allow updates, always requires
reconfigure with override, and can be set only by a System Security
Officer.This requirement is meant to supply a small measure of
added protection—to cause you to consider the consequences of
allowing direct updates to the system tables.

For certain values set to zero in sysconfigures, SQL Server calculates a
default. For example, if the user gives 0 for the number of open
databases, SQL Server might substitute the value 12. Whenever remote
access is set to 1, and the other configuration variables that affect
remote access are set to 0, SQL Server calculates default values for
each of them. (These are listed in Chapter 15, ‘‘Managing Remote
Servers’’.)

When the reconfigure command is accepted, SQL Server writes the
new configuration variables to the area of the disk that holds the
configuration structure. If you changed the value of a dynamic
variable, reconfigure updates the run value, and the change takes effect
immediately. If you changed a non-dynamic variable, the change
takes effect until the next time SQL Server is restarted.

Details on Configuration Variables

The following sections give additional information on the
configuration variables.

recovery interval

The recovery_interval sets the maximum number of minutes per
database that SQL Server should use to complete its recovery
procedures in case of a system failure.

SQL Server uses this number and the amount of activity on each
database to decide when to checkpoint each database. When SQL
Server checkpoints a database, it writes all dirty pages (data pages
which have been changed by data modification commands) to the

System Administration Guide 12-25

SYBASE SQL Server Release 10.0 Resetting the Configuration Variables

disk. The checkpoint also performs a few other “housekeeping”
tasks, including truncating the log if this option has been set with
sp_dboption. About once per minute, the sleeping checkpoint process
“wakes up”, checks the truncate log on checkpoint setting, and checks the
recovery interval to determine if it is time to perform a checkpoint.
The following illustration shows the logic used by SQL Server
during this process.

Figure 12-1: The Checkpoint Process

You may want to change the recovery interval if your application
and its usage change. For example, you may want to shorten the
recovery interval when there is an increase in update activity on
SQL Server. Shortening the recovery interval causes more frequent
checkpoints, which slows the system very slightly. (A typical
checkpoint takes about one second.) On the other hand, setting the
recovery interval too high might cause the time to recover to be
unacceptably long.

The default run value for this variable is 5 (minutes per database).

This variable is dynamic, which means that an updated value takes
effect as soon as the System Administrator issues the reconfigure
command.

Sleep

Checkpoint
Process

wakes up

Truncate Log
On Chkpt

Time To
Checkpoint?

Checkpoint
Performed

Checkpoint
Performed

Logs
Truncated

12-26 Fine-Tuning Performance and Operations

Resetting the Configuration Variables SYBASE SQL Server Release 10.0

➤ Note
If failure occurs during a long-running transaction, recovery time may be longer

than the specified recovery interval, since SQL Server must roll back the

changes during recovery.

allow updates

By default, system tables can be updated only indirectly, using
system procedures. The allow updates variable allows you to change
this situation. This variable can be set only by System Security
Officers.

The allow updates variable is a toggle: it is either on or off. When the
value is changed from the default 0 (off) to 1 (on), any user with
appropriate permissions can update the system tables directly with
ad hoc queries, and can create stored procedures that update the
system tables.

◆ WARNING!
Updating certain fields in the system tables causes SQL Server to be
unable to run. Therefore, allowing direct updates to the system tables is
risky. When you update system tables, always include the data
modification statements in a user-defined transaction so that you can roll
back the changes if necessary. Check the results carefully before you
commit the transaction.

Stored procedures that you create while the allow updates variable is
set on are always able to update the system tables, even after the
variable has been set back to off. Whenever you turn the allow updates
toggle on, you are creating a “window of vulnerability”—a period of
time during which SQL Server users can alter the system tables or
create a stored procedure with which the system tables can be altered
in the future.

Because the system tables are so critical, it is best to turn this toggle
on only in highly controlled situations. If you want to guarantee that
no other users can access SQL Server while the system tables can be
directly updated, you can restart SQL Server in single user mode. For
details, see the man pages on startserver and dataserver in the SQL Server
Utility Programs manual for your operating system.

allow updates is a dynamic option, which means that a new value takes
effect as soon as the System Administrator issues the reconfigure with

System Administration Guide 12-27

SYBASE SQL Server Release 10.0 Resetting the Configuration Variables

override command. The with override clause is always required for this
configuration variable as an added measure of protection.

user connections

This variable sets the maximum number of user connections that can
be connected to SQL Server at the same time. It does not refer to the
maximum number of processes; that number depends not only on
the value of this variable but also on other system activity.

The maximum allowable number of connections (or file descriptors)
is operating system dependent; see the System Administration Guide
Supplement for your platform.

The number available for SQL Server is stored in the global variable
@@max_connections. You can get a report on the maximum number of
file descriptors that your system can use with this statement:

select @@max_connections

This number represents the maximum number of file descriptors
allowed by the system for your process, minus the following file
descriptors used by SQL Server:

• One for each configured master network listener (one for every
“master” line in the interfaces file entry for that SQL Server)

• One for standard output

• One for the error log file

• One for internal use (VMS only)

This value does not include the count of or the number of site
handlers active at a given time. (For SQL Servers running on
OpenVMS, this value also subtracts one connection for a debug
port.)

◆ WARNING!
If user connections is set higher than the result of the computation
described below, some SQL Server processes, such as remote procedure
calls or periodic dumps to tape or disk files, may fail. Sybase Technical
Support can help you reset the maximum number of connections for your
configuration.

SQL Server allocates approximately 51K of memory as overhead per
user connection. If you increase the stack size or default packet size

12-28 Fine-Tuning Performance and Operations

Resetting the Configuration Variables SYBASE SQL Server Release 10.0

configuration variables, the amount of memory per user connection
increases also.

In addition, you must reserve a number of connections for:

• The data devices, including the master device

• Backup Server

• Mirror devices

• The maximum number of site handlers that are active at any
given time

To determine these values, use these three queries:

select count(*) from master..sysdevices
where cntrltype = 0

select count(*) from sysdevices
where mirrorname is not NULL

select count(*) from sysservers
where srvname != @@servername

The maximum value to which user connections can be set is the value of
@@max_connections minus the sum of the results of these three
queries.

There is no formula for determining how many connections to allow
for each user. Rather, you must estimate this number based on the
system and user requirements outlined here. You must also take into
account that on a system with many users, there is more likelihood
that connections needed only occasionally or transiently can be
shared among users.

• One connection is needed for each user running isql.
• Application developers use one connection for each editing

session.

• The number of connections required by users running an
application depends entirely on how the application has been
programmed. Users executing Open Client programs need one
connection for each open DB-Library dbprocess or Client-Library
cs_connection.

System Administration Guide 12-29

SYBASE SQL Server Release 10.0 Resetting the Configuration Variables

➤ Note
It’s a good idea to estimate the maximum number of connections that will be

used by SQL Server and to update user connections as you add physical devices

or users to the system. Use sp_who periodically to determine the number of

users on your SQL Server.

memory

This variable sets the size of memory, in 2K units, that SQL Server
allocates from the operating system. The default value of memory
varies from platform to platform: see the SYBASE SQL Server
Installation Guide for its value on your operating system.

The amount of memory configured must be enough for:

• SQL Server’s static memory needs (kernel overhead, user stack
space, etc.)

• The procedure cache and the data cache (also called buffer cache).
Changing caches memory allocations is discussed later.

• Network buffers for each user connection allocated with default
network packet size, discussed later.

• Buffers used for extent i/o buffers, discusses later.

The more memory available, the more resources SQL Server has for
internal buffers and caches—reducing the number of times the
server has to read data from disk for static information or compiled
procedure plans. There is no performance penalty for configuring
SQL Server to use the maximum memory available to it on your
computer. However, you must be sure to assess other memory needs
on your system, or SQL Server may not be able to acquire enough
memory to boot.

To maximize the amount of memory for SQL Server on your system:

• Subtract the memory required for the operating system from the
total physical memory on your computer system.

• If the machine is not wholly dedicated to SQL Server, subtract the
memory requirements for other system uses also. (Windowing
systems, such as X Windows, require a lot of memory and can
interfere with SQL Server performance when used on the same
machine as SQL Server.)

• Subtract memory allocated for additional netmem. This is explained
in ‘‘additional netmem’’ on page 12-38.

12-30 Fine-Tuning Performance and Operations

Resetting the Configuration Variables SYBASE SQL Server Release 10.0

The memory left over after SQL Server’s static memory needs are
met is divided between the procedure cache and the data cache. The
percentage allocated to the procedure cache is set by the procedure
cache configuration variable.

Change the value of the memory configuration variable:

• When you add or remove memory on the computer system

• When the use of the computer system changes

• If you allocate memory for extent I/O buffers or additional
network memory for SQL Server

You can also increase the value to enhance the performance of SQL
Server when applications need to use a lot of memory (for example,
when using large indexes).

If SQL Server Cannot Boot

When SQL Server is booted, it acquires as much of the specified
memory as the system allows. If this amount of memory is not
available, SQL Server acquires as much as it can.1 If the configured
size is extremely large relative to the available memory, SQL Server
cannot boot because it cannot allocate the requested amount of
memory.

 If SQL Server does not boot for this reason, you must run buildmaster
with the “reconfigure” command line option to reset the
configuration block to default values. This resets the run_value of all
configuration variables to their default values. The config_value
retains the settings you have set. You must reset memory value or other
configuration values that affect memory use, and then run reconfigure
and re-boot the server to install the new values that you have
changed. See the SQL Server Utility Programs manual for more
information about buildmaster.

open databases

This variable sets the maximum number of databases that can be
open at one time on SQL Server. The system databases master, model,
sybsystemprocs and tempdb are included in the number of open
databases. If you have installed auditing, the sybsecurity database
must be counted. The sample database pubs2 and the syntax database
sybsyntax are optional databases, but you must also count them if
they are installed.
1. If your operating system supports dynamic memory allocation throughout the life of a
process, it may allocate additional memory to SQL Server after it has started.

System Administration Guide 12-31

SYBASE SQL Server Release 10.0 Resetting the Configuration Variables

The default run value is 12. Setting the number of open databases
higher does not have a significant impact on performance or storage
requirements. Therefore, don’t hesitate to increase this value if you
are adding new user databases to your server, or if SQL Server ever
displays a message saying that you’ve exceeded the allowable
number of open databases. Each open database requires
approximately 17K of memory.

locks

This variable sets the number of available locks for all users on
SQL Server. Locks are not shared the way open databases and
database objects are.

The default run value in syscurconfigures is 5000. If this number
proves insufficient, SQL Server displays a message.

Setting the number of available locks higher does not have a
significant impact on performance or storage requirements.
Therefore, don’t hesitate to increase this value if SQL Server ever
displays a message saying that you’ve exceeded the allowable
number of available locks.

open objects

This variable sets the maximum number of database objects that can
be open at one time on SQL Server.

The default run value is 500. If this number proves insufficient, SQL
Server displays a message.

Setting the number of open database objects higher does not have a
significant impact on performance or storage requirements.
Therefore, don’t hesitate to increase this value if SQL Server ever
displays a message saying that you’ve exceeded the allowable
number of open database objects.

procedure cache

This variable gives the percentage of memory allocated to the
procedure cache after SQL Server’s memory needs are met. SQL
Server’s memory needs are the sum of memory necessary for locks,
user connections, the code itself (which varies slightly from release to
release), and other resources. The remaining memory is divided
between the procedure cache and the data cache according to the
percentage given by this configuration variable.

12-32 Fine-Tuning Performance and Operations

Resetting the Configuration Variables SYBASE SQL Server Release 10.0

SQL Server stores compiled stored procedures in the area of memory
called the procedure cache. If the server finds a procedure or a
compilation already in the cache, it doesn’t need to read it from the
disk. SQL Server also uses space in the procedure cache to compile
queries and while creating stored procedures.

SQL Server loads data pages and index pages into the area of
memory called the data cache. If SQL Server finds a data page or
index page that has already been called by a user in the cache, it isn’t
necessary to read it from the disk. The data cache holds most
recently-used data and index pages; older pages are copied to disk or
flushed as space is needed for new pages.

Both caches are managed in a LRU-MRU (least recently used, most
recently used) fashion.

The default run value for procedure cache is 20, which gives the
procedure cache 20% of memory that remains after SQL Server’s
requirements are met. By default, the data cache gets the other 80%.

Since the optimum value for this configuration variable is different
from application to application, resetting it may improve SQL
Server’s performance. For example, if you run many different
procedures or ad hoc queries, your application will use the
procedure cache more heavily, so you may want to increase this
value.

Many applications fall in this category during development. You
may want to try setting this variable to 50 during your development
cycle, and resetting it to 20 when your application becomes stable.

fillfactor

This variable determines how full SQL Server makes each page
when it is creating a new index on existing data (unless the user
specifies some other value in the create index statement). The fillfactor
percentage affects performance, because SQL Server must take the
time to split pages when they fill up. There is seldom a reason to
change the fillfactor variable, especially since you can override it in the
create index command.

The fillfactor percentage is used only at the time the index is created,
and becomes less important as more changes are made to the data.
The pages are not maintained at any particular level of fullness.

The default fillfactor run value is 0; this is used when you do not
include with fillfactor in the create index statement (unless it has been
changed with sp_configure). Legal values when specifying a fillfactor are
1 to 100.

System Administration Guide 12-33

SYBASE SQL Server Release 10.0 Resetting the Configuration Variables

If the fillfactor is set to 100, SQL Server creates both clustered and
nonclustered indexes with each page 100% full. A fillfactor of 100
makes sense only for read-only tables—tables to which no additional
data will ever be added.

A fillfactor of 0 does not mean that pages are 0% full. Rather, it is
treated like a fillfactor of 100 in that SQL Server creates clustered
indexes with completely full data pages, and nonclustered indexes
with completely full leaf pages. It is different from 100 in that SQL
Server leaves a comfortable amount of space within the index B-tree
in both cases.

Other fillfactor values cause SQL Server to create new indexes with
pages that are not completely full. For example, a fillfactor of 10 might
be a reasonable choice if you are creating an index on a table that you
know contains a small portion of the data it will eventually hold.
Smaller fillfactor values cause each index to take more storage space.

time slice

This variable sets the number of milliseconds that a user process is
allowed to run by SQL Server’s scheduler (which is invisible to the
user). If time slice is set too low, SQL Server may spend too much time
switching processes. If it is set too high, users may experience
lengthy response time.

The default run value is 100 milliseconds. There is seldom reason to
change it.

database size

This variable sets the default number of megabytes allocated to a
new user database if the create database statement is issued without
any size parameters. A database size given in a create database
statement takes precedence over the value set by this configuration
variable.

The default run value is 2 (megabytes). If most of the new databases
on your SQL Server require more than 2 megabytes, you may want to
increase this value.

➤ Note
You must increase the database size value if your model database grows to be

larger than 2 megabytes, since during execution of the create database
statement SQL Server copies model to create a new user database.

12-34 Fine-Tuning Performance and Operations

Resetting the Configuration Variables SYBASE SQL Server Release 10.0

tape retention

This variable can be used to set the number of days that you expect
to retain each backup tape after it has been used for a database or
transaction log dump. If you try to use the tape before that many
days have passed, Backup Server issues a warning message to the
tape operator. You can override the warning if you wish.

The default run value is 0. Unless you change it, no warning is
issued. A typical value might be 7 (days).

Both the dump database and dump transaction commands provide a
retaindays option, which overrides the tape retention value for a
particular dump. See ‘‘Protecting Dump Files from Being
Overwritten’’ on page 8-20 for more information.

recovery flags

This variable sets a toggle that determines what information SQL
Server displays on the console during recovery. The default run
value is 0, which means that SQL Server displays only the database
name and a message saying that recovery is in progress. The other
legal value is 1, which means that SQL Server displays information
about each individual transaction, including whether it was aborted
or committed.

nested triggers

This option is a toggle that controls the use of nested triggers. When
the option is 1, data modifications made by triggers can fire other
triggers. A set option, self_recursion, controls whether triggers re-fire
on data modifications made Set the option to 0 to disable nested
triggers. The default is 1.

devices

This variable controls the number of database devices that SQL
Server can use. It does not include devices used for database dumps.

If you want to lower the devices value after you have added database
devices, you must first check to see what devices numbers are
already in use by database devices. The following command prints
these highest value in use:

select max(low/power(2,24))
from master..sysdevices

The master device is device 0, so you must add one to the number
that this query returns to find the minimum value you can use to

System Administration Guide 12-35

SYBASE SQL Server Release 10.0 Resetting the Configuration Variables

reconfigure the devices variable. If you set this value too low, SQL
Server will not be able to recover databases that use devices with
higher numbers.

The default value is 10. Each device uses less than 1/2 K of memory.

remote access

This variable is a toggle that controls logins from remote SQL
Servers. The default value is 1, so that SQL Server can communicate
with Backup Server. Only a System Security Officer can set remote
access.

Setting the value to 0 disables server-to-server remote procedure
calls. Since SQL Server communicates with its Backup Server via
remote procedure calls, setting this variable to 0 makes it impossible
to back up a database. Since other system administration actions are
required to enable servers besides Backup Server to execute remote
procedure calls, leaving this option set to 1 does not comprise a
security risk.

The next four options listed by sp_configure, remote logins, remote sites,
remote connections and pre-read packets are set to default values
whenever the remote access option is 1. See the complete discussion of
these options in Chapter 15, ‘‘Managing Remote Servers’’.

upgrade version

The upgrade program provided with new releases changes this
number. You won’t need to change it with sp_configure; it merely
provides a way to check SQL Server to see that the latest upgrade
utility has been run.

default sortorder id

This is the number of the sort order that is currently installed as the
default on the server. If you want to change the default sort order, see
Chapter 17, ‘‘Language, Sort Order, and Character Set Issues’’.

default language

This is the number of the language that is used to display system
messages unless a user has chosen another language from those
available on the server. us_english always has an ID of 0. Additional
languages are assigned unique numbers as they are added.

12-36 Fine-Tuning Performance and Operations

Resetting the Configuration Variables SYBASE SQL Server Release 10.0

language in cache

This number indicates the maximum number of languages that can
be simultaneously held in the language cache. The default is 3.

max online engines

This number controls the number of engines in symmetric
multiprocessor environment. The default is 1. See Chapter 14,
‘‘Managing Multiprocessor Servers’’, for a detailed discussion of
how to set this variable for your SMP environment.

The next options, min online engines and engine adjust interval, are not
currently used.

cpu flush

This number is used in chargeback accounting. It specifies how many
machine clock ticks to accumulate before adding usage statistics to
syslogins for each user. See ‘‘Configuration Variables for Chargeback
Accounting’’ on page 4-23 for more information.

i/o flush

This number is used in chargeback accounting. It specifies how many
read or write I/Os to accumulate before flushing the data to syslogins.
See ‘‘Configuration Variables for Chargeback Accounting’’ on page
4-23 for more information.

default character set id

This is the number of the default character set used by the server. The
default is set at installation time, and can be changed with sybinit. See
Chapter 17, ‘‘Language, Sort Order, and Character Set Issues’’ for a
discussion of how to change character sets and sort orders.

stack size

Certain queries, particularly those with dozens or hundreds of
clauses in a where column_name in clause, can exceed the configured
capacity of the server’s execution or argument stack. Whenever these
queries, or other queries that require large amounts of stack space,
are run, SQL Server prints an error message and rolls back the
transaction. The two options are to break these large queries into
smaller queries, or to increase the size of the server’s stack. Changing
the stack size affects the amount of memory required for each user
connection. The following command sets the stack size to 30K:

System Administration Guide 12-37

SYBASE SQL Server Release 10.0 Resetting the Configuration Variables

sp_configure "stack size", 30720

When you run reconfigure, the server checks the value to determine
whether it is an even multiple of your SQL Server’s page size. If the
value is not an even multiple, reconfigure rounds the value up to the
nearest page-size multiple, and print an informational message
indicating the value.

 password expiration interval

This is the number of days that passwords remain in effect after they
are changed. If password expiration interval is set to 0 (the default value),
passwords do not expire. If it is set to a number greater than 0, all
passwords expire after the specified number of days. An account’s
password is considered expired if an interval greater than
number_of_days has passed since the last time the password for that
account was changed.

When the number of days remaining before expiration is less than
25% of the value of password expiration interval or seven days, whichever
is greater, each time the user logs in he or she is greeted with a
message giving the number of days remaining before expiration. Of
course, users can change their passwords any time before expiration.

When an account’s password has expired, the user can still log into
SQL Server but cannot execute any commands until the user has
used sp_password to change his or her password. If the user issues any
command other than sp_password, the user receives an error message
and the command fails. If the System Security Officer changes the
user’s password while the account is in sp_password-only mode, the
account returns to normal once the new password is assigned.

This applies only to login sessions established after the password has
expired. Users who are logged in at the time that their passwords
expire are not affected until the next time they log in.

The default for password expiration interval is 0 (no expiration). This
variable can be set only by System Security Officers.

audit queue size

The in-memory audit queue holds audit records generated by user
processes until the records can be processed and written to the audit
trail. A System Security Officer can change the size of the audit queue
with the audit queue size configuration variable. There is a
performance/risk trade-off that must be considered when you
configure the queue size. If the queue is too large, records can remain
in it for some time. As long as records are in the queue, they are at

12-38 Fine-Tuning Performance and Operations

Resetting the Configuration Variables SYBASE SQL Server Release 10.0

risk of being lost if the system crashes. However, if the queue is too
small it can repeatedly become full, which effects overall system
performance: user processes that generate audit records sleep if the
audit queue is full.

The default value is 100, meaning that the audit queue can store up
to 100 records. The minimum value is 1, the maximum is 65535.

Here are some guidelines for determining how big your audit queue
should be. You must also take into account the amount of auditing to
be done at your site.

• The memory requirement for a single audit record is 424 bytes.

• The maximum number of audit records that can be lost in a
system crash is the size of the audit queue (in records), plus 20.
After records leave the audit queue they remain on a buffer page
until they are written to sysaudits, on the disk. The sysaudits pages
are flushed to disk at most every 20 records (less if the audit
process is not constantly busy).

• Although the memory requirement for a single audit record is 424
bytes, a record can be as small as 22 bytes when it is written to a
data page.

• In sysaudits, the extrainfo field and fields containing names are of
variable length, so audit records that contain full name
information are generally larger.

Thus, the number of audit records that can fit on a page varies
roughly from 4 to as many as 80 or more. The memory requirement
for the default audit queue size of 100 is approximately 42K.

additional netmem

additional netmem sets the maximum size of additional memory that can
be used for network packets that are larger than SQL Server’s default
packet size. The default value for additional netmem is 0, which means
that no extra space has been allocated for large packets. See the
discussion below, under maximum network packet size, for information on
setting this configuration variable.

Memory allocated with additional netmem is added to the memory
allocated by memory. It does not affect other SQL Server memory uses.

default network packet size

This variable configures the default packet size for all SQL Server
users. The default value is 512 bytes. You can set default network packet

System Administration Guide 12-39

SYBASE SQL Server Release 10.0 Resetting the Configuration Variables

size to any multiple of 512 bytes, up to a maximum of 524,288. Values
that are not even multiples of 512 are rounded down.

Memory for all users who log in with the default packet size is
allocated from SQL Server’s memory pool, set with the memory
configuration variable. This memory is allocated for network packets
when SQL Server boots.

Each SQL Server user connection uses:

• 1 read buffer

• 1 read overflow buffer

• 1 write buffer

Each of these buffers requires default network packet size bytes. The total
amount of memory allocated for network packets is:

user connections * 3 * default network packet size

When you provide a new value for this variable, SQL Server requires
that amount of memory for each of the three buffers, for each user
connection. For example, if you set the default network packet size to 1024
bytes, and have 50 user connections, the amount of network memory
required is:

50 * 3 * 1024 = 153600 bytes

If you increase default network packet size, check the memory configuration
and user connections variables to be sure that you leave enough space
for other SQL Server memory needs. When you reboot the Server
after changing the default network packet size, check the messages which
report buffer allocation to be sure that you have enough memory
remaining.

If you increase the default network packet size, you must also increase the
maximum network packet size to at least the same size. Execute both
sp_configure commands, then run reconfigure.

maximum network packet size

If some of your applications send or receive large amounts of data
across the network, these applications can achieve significant
performance improvement by using larger packet sizes. Two
examples are large bulk copy operations and applications reading or
writing large text or image values. Generally, you want to keep the
value of default network packet size small for users performing short
queries, and allow users who send or receive large volumes of data
to request larger packet sizes by setting the maximum network packet size
configuration variable.

12-40 Fine-Tuning Performance and Operations

Resetting the Configuration Variables SYBASE SQL Server Release 10.0

The default value for maximum network packet size is 512 bytes. It must
always be as large as, or larger than the default network packet size. You
can reset the maximum size without resetting default network packet size.
Values that are not even multiples of 512 are rounded down. The
maximum value is 524,288 bytes.

SQL Server guarantees that every user connection will be able to log
in at the default packet size. If you increase maximum network packet size
and additional netmem remains set to 0, clients cannot use packet sizes
that are larger than the default size: all allocated network memory
will be reserved for users at the default size. In this situation, users
who request a large packet size when they log in receive a warning
message telling them that their application will use the default size.

To determine the value for additional netmem if your applications use
larger packet sizes:

• Estimate the number of simultaneous users who will request the
large packet sizes, and the sizes their applications will request.

• Multiply this sum by three, since each connection needs three
buffers.

• Add 2% for overhead, rounded up to the next multiple of 512.

For example, if you estimate these simultaneous needs for larger
packet sizes:

You should set additional netmem to 75264.

See bcp and isql in the SQL Server Utility Programs manual for your
platform for information on using larger packet sizes from these
programs. Open Client Client-Library documentation includes
information on using variable packet sizes.

application packet size overhead
bcp 8192
Client-Library 8192
Client-Library 4096
Client-Library 4096
Total 24576
Multiply by 3 buffers/user *3

73728
Compute 2% overhead and

 round up to a multiple of 512
* .02=1474

1536
Add overhead + 1536
Total additional network memory 75264

System Administration Guide 12-41

SYBASE SQL Server Release 10.0 Resetting the Configuration Variables

Choosing Packet Sizes

The default network packet size and maximum network packet size variables
must be multiples of 512. In addition, you should choose a Server
packet size that works efficiently with the underlying packet size on
your network for best performance. The two criteria are:

• Reducing the number of server reads and writes to the network

• Reducing unused space in network packets (increasing network
throughput)

For example, if your network packet size carries 1500 bytes of data,
setting SQL Server’s packet size to 1024 (512*2) will probably achieve
better performance than setting it to 1536 (512*3).

12-42 Fine-Tuning Performance and Operations

Resetting the Configuration Variables SYBASE SQL Server Release 10.0

Figure 12-2: Factors in Determining Packet Size shows sample packet
sizes.

Figure 12-2: Factors in Determining Packet Size

After you determine the available data space of the underlying
packets on your network, you should perform your own benchmark
tests to determine the optimum size for your configuration.

Underlying Network Packets: 1500 Bytes after overhead

SQL Server Packet Size 1536
Used 1536 Bytes
Unused 1464 Bytes

% Used 51%

2 server reads

SQL Server Packet Size 1024
Used 1024 Bytes
Unused 476 Bytes

% Used: 68%

1 server read

Key:

Overhead Data Unused

SQL Server Packet Size 512
Used 1024 Bytes
Unused 476 Bytes

% Used: 68%

2 server reads

SQL Server Packet Size 2560
Used 2560 Bytes
Unused 440 Bytes

% Used 85%

2 server reads

SQL Server Default Packet Size; depending on amount of data,
network packets may have 1 or 2 packets

Should yield improved performance over default of 512

Possibly best option of illustrated choices

Probably worst option of illustrated choices

System Administration Guide 12-43

SYBASE SQL Server Release 10.0 Resetting the Configuration Variables

extent i/o buffers

extent i/o buffers allocates the specified number of extents (8 data pages)
for use by the create index command. The default value is 0, which
means that SQL Server reads and writes individual pages for
intermediate sort results and index pages to disk, one page at a time.
Allocating extent I/O buffers speeds up indexing by speeding up
disk reads and writes.

All of the buffers are allocated to the first user who creates an index.
If multiple users create indexes simultaneously, the first user to start
uses extent I/Os; all others uses normal page I/Os. You should try to
schedule large index creation at times when few other users are on
the system.

For each extent I/O buffer you configure, the server allocates 8 data
pages from memory allocated to the server with the memory
configuration variable. A reasonable value for a server with 8MB of
memory and a 20% procedure cache is 10, requiring 160K of memory
(10 buffers * 8 pages per buffer * 2048 bytes per page). On Stratus, the
total is 320K, 10 buffers * 8 pages * 4K data pages.

identity burning set factor

IDENTITY columns are columns of type numeric and scale zero whose
value is generated by SQL Server. Column values can range from a
low of 1 to a high determined by the column precision.

For each table with an IDENTITY column, SQL Server divides the set
of possible column values into blocks of consecutive numbers, and
makes one block at a time available in memory. Each time you insert
a row into a table, SQL Server automatically assigns the IDENTITY
column the next available value from the block. When all the
numbers in a block have been used, the next block becomes
available.

This method of choosing IDENTITY column values improves server
performance. When SQL Server assigns a new column value, it reads
the current maximum value from memory and adds 1. Disk access
becomes necessary only after all values within the block have been
used. Because all remaining numbers in a block are discarded in the
event of server failure, this method can lead to gaps in IDENTITY
column values.

Use identity burning set factor to change the percentage of potential
column values that is made available in each block. This number
should be high enough for good performance, but not so high that
gaps in column values are unacceptably large. The default value,

12-44 Fine-Tuning Performance and Operations

Improving Performance Using Segments SYBASE SQL Server Release 10.0

5000, releases .05% of the potential IDENTITY column values for use at
a time.

To get the correct value for sp_configure, express the percentage in
decimal form, then multiply it by 10 7 (10,000,000). For example, to
release 15 percent (.15) of the potential IDENTITY column values at a
time, you specify a value of .15 times 107 (or 1,500,000) in sp_configure:

sp_configure "identity burning set factor", 1500000

Improving Performance Using Segments

In a large, multi-database and/or multi-drive SQL Server
environment, careful attention to the allocation of space to databases
and to the placement of database objects on physical devices can
enhance system performance. Preferably, each database will have
exclusive use of database devices, that is, it won’t share a physical
disk with another database.

Generally, placing a table on one physical device, its nonclustered
index on a second physical device, and the transaction log on a third
physical device can speed performance. The log on extension to create
database (or sp_logdevice) handles the placement of the transaction log
on a separate physical disk. Placing other database objects on specific
physical devices is managed through the use of segments, which
provide a technique for labeling collections of database devices.
(Placing tables and indexes on segments is explained in Chapter 3,
‘‘Managing Physical Resources’’.)

Placing objects on segments may improve performance since default
placement of objects can split tables and indexes across devices. In
particular, a well-tuned database restricts indexes to a single device.

Splitting a Large Table Across Segments

Performance can be improved for high-volume multi-user
applications when large tables are split across segments that are
located on separate disk controllers.

Figure 12-3: Splitting a Large Table Across Two Segments illustrates the
process of splitting a table across two segments. First, the devices are
initialized with disk init, and then assigned to the database with alter
database. Two segments are created, one on each device. A third
segment is created and then extended, so that it labels both devices.
The system and default segments are dropped from both of the
devices.

System Administration Guide 12-45

SYBASE SQL Server Release 10.0 Improving Performance Using Segments

The table and its clustered index are created on the first segment, and
half of the data is loaded. Then, sp_placeobject is used to cause all
further allocations of disk space to occur on the second segment.
Once the data is loaded on the second segment, sp_placeobject is used

/dev/rxy1a /dev/rxy2e

Physical devices

use master

alter database mydata
on mydisk1 = 4, mydisk2 = 4

use mydata

sp_addsegment seg_mydisk1, mydata, mydisk1
sp_addsegment seg_mydisk2, mydata, mydisk2
sp_addsegment seg_bothdisks, mydata, mydisk1
sp_extendsegment seg_bothdisks, mydata, mydisk2

sp_dropsegment "default", mydata, mydisk1
sp_dropsegment system, mydata, mydisk1
sp_dropsegment "default", mydata, mydisk2
sp_dropsegment system, mydata, mydisk2

create table authors (au_id etc.) on seg_mydisk1
create clustered index au_ind on authors (au_id)

on seg_mydisk1

 [use bcp to load half of the rows]

sp_placeobject segmydisk2, authors

 [use bcp to load the rest of the rows]

sp_placeobject seg_bothdisks, authors

disk init
name = "mydisk1",
physname = "/dev/rxy1a",
vdevno = 7,
size = 2048

disk init
name = "mydisk2",
physname = "/dev/rxy2e",
vdevno = 8,
size = 2048

Select physical devices to
be used by SQL Server.

Start in master database.

Map SQL Server database
device name to physical

device with disk init.

Add the devices mydisk1
and mydisk2 to mydata.

Change to mydata database.

Add a segment on mydisk1 and
another on mydisk2. Create a third
segment, and extend it to span both

disks.

Drop system and default
segments from the new devices.

Create the table and clustered
index on the segment.

Load half of the rows.

Place the object on the second segment.

Load the rest of the rows.

Place the table on the segment that spans
both disks.

Figure 12-3: Splitting a Large Table Across Two Segments

12-46 Fine-Tuning Performance and Operations

Improving Performance Using Segments SYBASE SQL Server Release 10.0

again, this time placing the table on the segments that span both
devices.

➤ Note
The order of events is quite important at certain stages. In particular, the

clustered index must be created before the table is placed on the second

segment. After that point, creation of a clustered index would cause the entire

object to migrate to the second segment.

If the index is created after the creation of seg_bothdisks, the allocation
of disk space is unpredictable.

If the table is updated frequently, the balance of disk allocation may
change over time. To guarantee that the speed advantages are
maintained, it may be necessary to drop and recreate the table.

System Administration Guide 13-1

13. Locking

Introduction

SQL Server protects the tables or data pages currently used by active
transactions by locking them. Locking is a concurrency control
mechanism: it ensures the consistency of data across transactions. It
is needed in a multi-user environment, since several users may be
working with the same data at the same time.

This chapter discusses:

• The types of consistency issues that arise in multi-user databases,
and the SQL Server options for enforcing different levels of
consistency

• Locks used in SQL Server

• Using the set transaction isolation level command to meet ANSI
requirements

• Locks used by Transact-SQL commands

• System procedures for examining locks and user processes
blocked by locks (sp_lock and sp_who)

• SQL Server’s handling of deadlocks

• Locking and performance issues

• Strategies for reducing lock contention

Overview of Locking

Consistency of data means that if multiple users repeatedly execute
a series of transactions, the results are the same each time. This
means that simultaneous retrievals and modifications of data do not
interfere with each other.

13

13-2 Locking

Overview of Locking SYBASE SQL Server Release 10.0

For example, assume that the following transactions, T1 and T2, run
at approximately the same time:

If transaction T2 runs before T1, or after T1, both executions would
return the same value. But if T2 could run in the middle of
transaction T1 (after the first update), the result for transaction T2
would be different by 100. SQL Server prevents this possibility by
locking the data used in T1 until the transaction finishes, and only
then allowing T2 to complete its query.

Locking is handled automatically by SQL Server and is not under
user control (with a few exceptions described later). However, you
must still know how and when to use transactions to preserve the
consistency of your data, while maintaining high performance and
throughput. Transactions are described in the Transact-SQL User’s
Guide and in Volume 1 of the SQL Server Reference Manual.

T1 Event Sequence T2

begin transaction

update account
set balance = balance - 100
where acct_number = 25

update account
set balance = balance + 100
where acct_number = 45

commit transaction

T1 and T2 start

T1 updates balance
for one account by
subtracting $100

T2 queries the sum
balance for accounts
which is off by $100

T2 ends

T1 updates balance
of other account to

add the $100

T1 ends

begin transaction

select sum(balance)
from account
where acct_number < 50

commit transaction

Figure 13-1: Consistency Levels in Transactions

System Administration Guide 13-3

SYBASE SQL Server Release 10.0 Overview of Locking

Isolation Levels and Transactions

The ANSI standard defines 3 levels of isolation for SQL transactions.
Each isolation level specifies the kinds of actions that are not
permitted while concurrent transactions execute. Higher levels
include the restrictions imposed by the lower levels:

• Level 1 prevents dirty reads. “Dirty reads” occur when one
transaction modifies a row, and then a second transaction reads
that row before the first transaction commits the change. If the
first transaction rolls back the change, the information read by the
second transaction becomes invalid.

The example in Figure 13-1 shows a case of a “dirty read”. The
following example describes another case:

If transaction T4 queries the table after T3 updates it, but before
it rolls back the change, the amount calculated by T4 is off by
100.

T3 Event Sequence T4

begin transaction

update account
set balance = balance - 100
where acct_number = 25

rollback transaction

T3 and T4 start

T3 updates balance
for one account by
subtracting $100

T4 queries the
current sum balance

for accounts

T4 ends

T3 rolls back
invalidating the
results from T4

begin transaction

select sum(balance)
from account
where acct_number < 50

commit transaction

Figure 13-2: Dirty Reads in Transactions

13-4 Locking

Overview of Locking SYBASE SQL Server Release 10.0

• Level 2 prevents non-repeatable reads. “Non-repeatable reads”
occur when one transaction reads a row and then a second
transaction modifies that row. If the second transaction commits
its change, subsequent reads by the first transaction yield
different results than the original read. For example:

If transaction T6 modifies and commits the changes to the
account table after the first query in T5 but before the second one,
the same two queries in T5 produce different results.

T5 Event Sequence T6

begin transaction

select balance
from account
where acct_number = 25

select balance
from account
where acct_number = 25

commit transaction

T5 and T6 start

T5 queries the
balance for one

account

T6 updates the
balance for that
same account

T6 ends

T5 makes same query
as before and gets
different results

T5 ends

begin transaction

update account
set balance = balance - 100
where acct_number = 25

commit transaction

Figure 13-3: Non-repeatable Reads in Transactions

System Administration Guide 13-5

SYBASE SQL Server Release 10.0 Overview of Locking

• Level 3 prevents phantoms. “Phantoms” occur when one
transaction reads a set of rows that satisfy a search condition, and
then a second transaction modifies the data (through an insert,
delete, or update). If the first transaction repeats the read with the
same search conditions, it obtains a different set of rows. For
example:

If transaction T8 inserts rows into the table that satisfy T7’s
search condition after the T7 executes the first select, subsequent
reads by T7 using the same query result in a different set of rows.

By default, SQL Server’s transaction isolation level is 1. You can
enforce the other isolation levels using the holdlock keyword of the
select statement or using the transaction isolation level option of the set
command. holdlock and transaction isolation level are described in
‘‘holdlock and Isolation Levels’’ on page 13-9.

Granularity of Locks

The granularity of locks in a database refers to how much of the data
is locked at one time. In theory, a database server could lock as much
as the entire database or as little as a row of data. However, such
extremes affect the concurrency (number of users that can access the
data) and locking overhead (amount of work to process each lock) in
the server.

T7 Event Sequence T8

begin transaction

select * from account
where acct_number < 25

select * from account
where acct_number < 25

commit transaction

T7 and T8 start

T7 queries a certain
set of rows

T8 inserts a row that
meets the criteria for

query in T7

T8 ends

T7 makes the same
query and gets a

new row

T7 ends

begin transaction

insert into account
(acct_number, balance)
values (19, 500)

commit transaction

Figure 13-4: Phantoms in Transactions

13-6 Locking

Locking in SQL Server SYBASE SQL Server Release 10.0

By increasing the lock size, the amount of work required to obtain a
lock becomes smaller, but large locks can degrade performance as
more users must wait until the locks are released. By decreasing the
lock size, more of the data becomes accessible to other users, but
small locks can also degrade performance, since more work is
necessary to maintain and coordinate the increased number of locks.
Smaller locks also increase the likelihood of deadlocks. To achieve
optimum performance, a locking scheme must balance the needs of
concurrency and overhead.

SQL Server achieves this balance by locking only data pages or
tables. It does not lock work or temporary tables because they are
always single-user by definition. These locking mechanisms are
described in the following sections.

Locking in SQL Server

SQL Server handles all locking decisions. It chooses which type of
lock to use after it determines the query plan. However, the way you
write a query or transaction can affect the type of lock the server
chooses. You can also force the server to choose more or less
restrictive locks by including the holdlock, noholdlock, or shared
keywords with your queries. Each of these options are described
later in this section.

SQL Server has two levels of locking: page locks and table locks.
Page locks are generally less restrictive (or smaller) than table locks;
one table can span multiple data pages. SQL Server attempts to use
page locks as frequently as possible to reduce the contention for data
among users and to improve concurrency.

SQL Server uses table locks to provide more efficient locking when it
suspects the whole table may be needed by a statement. For example,
the following statement generates one table lock instead of
numerous page locks:

update account set balance = balance * 1.05

Table locks also provide a way to avoid lock collisions at the page
level. SQL Server automatically uses table locks for some commands.

SQL Server first tries to satisfy requests with page locks whenever
possible. However, once a statement accumulates more than 200
page locks, SQL Server attempts to issue a table lock on that object. If
it succeeds, the page locks are no longer necessary and are released.

System Administration Guide 13-7

SYBASE SQL Server Release 10.0 Locking in SQL Server

Page Locks

The following describes the different types of page locks:

• Shared

SQL Server applies shared locks for read operations. If a shared
lock has been applied to a data page, other transactions can also
acquire a shared lock even when the first transaction is not
finished. However, no transaction can acquire an exclusive lock
on the page until all shared locks on it are released. That is, many
transactions can simultaneously read the page, but no one can
write to it.

By default, SQL Server releases shared page locks after the
statement completes; it does not hold them until the end of its
transaction. Transactions that need an exclusive page lock wait
or “block” for the release of the shared page locks before
continuing.

• Exclusive

SQL Server applies exclusive locks for data modification opera-
tions. When a transaction gets an exclusive lock, other transac-
tions cannot acquire a lock of any kind on the page until the
exclusive lock is released at the end of its transaction. Those
other transactions wait or “block” until the exclusive lock is
released, before continuing.

• Update

SQL Server applies update locks during the initial portion of an
update or delete operation when the pages are being read. The
update locks allow shared locks on the page, but do not allow
other update locks or exclusive locks. This is an internal lock to
help avoid deadlocks. Later, if the pages need to be changed and
no other shared locks exist on the pages, the update locks are
promoted to exclusive locks.

In general, read operations acquire shared locks, while write
operations acquire exclusive locks. However, SQL Server can only
apply page-level exclusive and update locks if the column used in
the search argument is part of an index.

13-8 Locking

Locking in SQL Server SYBASE SQL Server Release 10.0

The following examples show what kind of page locks SQL Server
uses for the respective statement (assuming indexes are used in their
search arguments):

select balance from account Shared Page Lock
where acct_number = 25

insert account values(34, 500) Exclusive Page Lock

delete account Update Page Locks
where balance < 0 Exclusive Page Locks

update account set balance = 0 Update Page Lock,
where acct_number = 25 Exclusive Page Lock

Table Locks

The following describes the different types of table locks.

• Intent

An intent lock indicates that certain types of page-level locks are
currently held in a table. SQL Server applies an intent table lock
with each shared or exclusive page lock. Setting an intent lock
prevents other transactions from subsequently acquiring a
shared or exclusive lock on the table which contains that locked
page. Intent locks are held as long as the concurrent page locks
are in effect.

• Shared

This lock is similar to the shared page lock, except that it affects
the entire table. For example, SQL Server applies shared table
locks is with the create nonclustered index statement.

• Exclusive

This lock is similar to the exclusive page lock, except that it also
affects the entire table. SQL Server applies exclusive table locks
during the create clustered index command, for example. update or
delete statements generate exclusive table locks if their search
arguments do not reference indexed columns of the object.

The following examples show the respective page and table locks
issued for each statement:

select balance from account Intent shared table lock,
where acct_number = 25 shared page lock

insert account values(34, 500) Intent exclusive table lock,
exclusive page lock

System Administration Guide 13-9

SYBASE SQL Server Release 10.0 Locking in SQL Server

These two examples assume there are indexes on the balance and
acct_number; otherwise, SQL Server would just issue exclusive table
locks for the statements:

delete account Intent exclusive table lock,
where balance < 0 update page locks,

exclusive page locks

update account set balance = 0 Intent exclusive table lock,
where acct_number = 25 update page lock,

exclusive page lock

Demand Locks

Demand locks prevent any more shared locks from being set. SQL
Server sets a demand lock to indicate that a transaction is next in line
to lock a table or page. This avoids situations in which read
transactions acquire overlapping shared locks, monopolizing a table
or page, so that a write transaction waits indefinitely for its exclusive
lock.

After waiting on several different read transactions, SQL Server
gives a demand lock to the write transaction. As soon as the existing
read transactions finish, the write transaction is allowed to proceed.
Any new read transactions must then wait for the write transaction
to finish, when its exclusive lock is released.

holdlock and Isolation Levels

The holdlock keyword, used in select and readtext statements, makes a
shared page or table lock more restrictive. It applies:

• To shared locks

• To the table or view for which it is specified

• For the duration of the statement or transaction containing the
statement

In a transaction, holdlock instructs SQL Server to hold the shared lock
that it has set until the completion of that transaction, instead of
releasing the lock as soon as the required table, view, or data page is
no longer needed (whether or not the transaction has completed).
SQL Server always holds exclusive locks until the end of a
transaction.

When you use holdlock with a statement, SQL Server applies shared
page locks if the statement’s search argument references indexed

13-10 Locking

Locking in SQL Server SYBASE SQL Server Release 10.0

columns of the object. Otherwise, SQL Server applies a shared table
lock. The following example assumes that an index does not exist for
acct_number:

select balance Shared Table Lock
from account holdlock
where acct_number = 25

SQL Server’s default handling of shared locks—releasing page locks
as soon as the table or view is no longer needed—allows concurrent
access to the database even while a lengthy transaction is
proceeding. However, it only enforces ANSI isolation level 1, which
prevents “dirty reads”. By using the holdlock keyword, you can
enforce isolation level 3, which prevents “non-repeatable reads” and
“phantoms”.

Preventing Dirty Reads

At isolation level 1 (the default), SQL Server prevents “dirty reads”
by:

• Applying exclusive locks on pages or tables being changed. It
holds those locks until the end of the transaction.

• Applying shared locks on pages being searched. It releases those
locks after processing the object.

For example, let’s look at the previous case of a “dirty read”:

T3 Event Sequence T4

begin transaction

update account
set balance = balance - 100
where acct_number = 25

rollback transaction

T3 and T4 start

T3 updates account
after getting

exclusive lock

T4 tries to get shared
lock to query account
but must wait until
T3 releases its lock

T3 ends and releases
its exclusive lock

T4 gets shared lock,
queries account, and

ends

begin transaction

select sum(balance)
from account
where acct_number < 50

commit transaction

Figure 13-5: Avoiding Dirty Reads in Transactions

System Administration Guide 13-11

SYBASE SQL Server Release 10.0 Locking in SQL Server

When the update statement in transaction T3 executes, SQL Server
applies an exclusive lock (a page-level lock if acct_number is indexed
or a table-level lock otherwise) on account. The query in T4 cannot
execute until the lock is released, when T3 ends with the rollback.

Preventing Non-Repeatable Reads and Phantoms

At isolation level 3, SQL Server also prevents “non-repeatable reads”
and “phantoms” by (the restrictions imposed by level 2 are included
in level 3):

• Applying exclusive locks on pages or tables being changed

• Applying shared locks on pages or tables being searched

It holds both exclusive and shared locks until the end of the
transaction.

For example, let’s look at the previous case of a “phantom”:

In transaction T7, SQL Server applies shared page locks (if an index
exists on the acct_number argument) or a shared table lock (if no
index exists) and holds those locks until the end of T7. The insert in T8
cannot get its exclusive lock until T7 releases those shared locks.

T7 Event Sequence T8

begin transaction

select * from
account holdlock
where acct_number < 25

select * from
account holdlock
where acct_number < 25

commit transaction

T7 and T8 start

T7 queries account
and holds acquired

shared locks

T8 tries to insert row
but must wait until
T7 releases its locks

T7 makes same query
and gets same results

T7 ends and releases
its shared locks

T8 gets its exclusive
lock, inserts new row,

and ends

begin transaction

insert into account
(acct_number, balance)
values (19, 500)

commit transaction

Figure 13-6: Avoiding Phantoms in Transactions

13-12 Locking

Locking in SQL Server SYBASE SQL Server Release 10.0

Defining the Default Isolation Level

The ANSI standard requires a default transaction isolation level of 3.
To enforce this default, Transact-SQL provides the option transaction
isolation level with the set statement. For example, you can make level
3 the default isolation level for a session as follows:

set transaction isolation level 3

This instructs SQL Server to automatically apply a holdlock to all select
operations in a transaction. For more information about the transaction
isolation level option, see “Transactions” in Volume 1 of the SQL Server
Reference Manual.

Using the noholdlock Keyword

The noholdlock keyword prevents SQL Server from holding any
shared locks acquired during the execution of the select statement,
regardless of the transaction isolation level currently in effect.
noholdlock is useful in situations when the default isolation level is 3,
but your query does not need to hold its shared locks until the end of
the transaction.

Cursors and Locking

Cursor locking methods are similar to the other locking methods for
SQL Server. For cursors declared as read only or declared without the
for update clause, SQL Server uses shared page locks on the data page
that includes the current cursor position. For cursors declared with
for update, SQL Server uses update page locks by default when
scanning tables or views referenced with the for update clause of declare
cursor. If the for update list is empty, all tables and views referenced in
the from clause of the select_statement receive update locks.

SQL Server releases shared and update locks when the cursor
position moves off a data page. If a row of an updatable cursor is
updated or deleted, SQL Server promotes its shared or update lock to
an exclusive lock. Any exclusive locks acquired by a cursor in a
transaction are held until the end of that transaction. This also
applies to shared or update locks when using the holdlock keyword or
the set isolation level 3 option.

The following describes the locking behavior for cursors at each
isolation level:

• At level 1, SQL Server uses a shared or update lock on base table
pages that contain a row representing a current cursor position.

System Administration Guide 13-13

SYBASE SQL Server Release 10.0 Locking in SQL Server

The page remains locked until the current cursor position moves
off the page as a result of fetch statements.

• At level 3, SQL Server uses a shared or update lock on any base
table pages which have been read in a transaction through the
cursor. SQL Server holds the locks until the transaction ends; it
does not release the locks when the data page is no longer
needed.

If you do not set the close on endtran option, a cursor remains open past
the end of the transaction, and its current page lock remains in effect.
It could also continue to acquire locks as it fetches additional rows.

Using the shared Keyword

When declaring an updatable cursor using the for update clause, you
can tell SQL Server to use shared page locks (instead of update page
locks) in the cursor’s declare cursor statement:

declare cursor_name cursor
for select select_list
from { table_name | view_name } shared
for update [of column_name_list]

This allows other users to obtain an update lock on that table or view.
You can only use shared with the declare cursor statement.

You can use the holdlock keyword in conjunction with shared after each
table or view name, but holdlock must precede shared in the select
statement. For example:

declare authors_crsr cursor
for select au_id, au_lname, au_fname

from authors holdlock shared
where state != 'CA'
for update of au_lname, au_fname

These are the effects of specifying the holdlock or shared options (of the
select statement) when defining an updatable cursor:

• If you omit both options, you can read data on the currently
fetched pages only. Other users cannot update, through a cursor
or otherwise, your currently fetched pages. Other users can
declare a cursor on the same tables you use for your cursor, but
they cannot get an update lock on your currently fetched pages.

• If you specify the shared option, you can read data on the currently
fetched pages only. Other users cannot update, through a cursor
or otherwise, your currently fetched pages.

13-14 Locking

Locking in SQL Server SYBASE SQL Server Release 10.0

• If you specify the holdlock option, you can read data on all pages
fetched (in a current transaction) or only the pages currently
fetched (if not in a transaction). Other users cannot update,
through a cursor or otherwise, your currently fetched pages or
pages fetched in your current transaction. Other users can declare
a cursor on the same tables you use for your cursor, but they
cannot get an update lock on your currently fetched pages or
pages fetched in your current transaction.

• If you specify both options, you can read data on all pages fetched
(in a current transaction) or only the pages currently fetched (if
not in a transaction). Other users cannot update, through a cursor
or otherwise, your currently fetched pages.

Summary of Lock Types and Lock Limits

The following table describes the types of locks SQL Server applies
for insert and create index statements:

Statement Table
Lock

Page
Lock

insert IX X

create clustered index X -

create nonclustered index S -

IX = intent exclusive, S = shared, X = exclusive

Table 13-1: Summary of Locks for insert and create index Statements

System Administration Guide 13-15

SYBASE SQL Server Release 10.0 Locking in SQL Server

This next table describes the types of locks SQL Server applies for
select, delete, and update statements. It divides the select, update, and
delete statements into two groups, since the types of locks they use
can vary if the statement’s search argument references indexed
columns on the object:

Note that the above tables do not describe situations in which SQL
Server initially uses table locks (if a query requires the entire table),
nor when it promotes to a table lock after 200 page locks.

Configuring SQL Server’s Lock Limit

Each lock counts toward SQL Server’s limit of total number of locks.
By default, SQL Server is configured with 5000 locks. A System
Administrator can change this limit using the sp_configure system
procedure. For example:

sp_configure locks, 10000

You may also need to adjust the memory option of sp_configure, since
more locks use additional memory.

The number of locks required by a server can vary depending on the
number of concurrent processes and the types of actions performed
by the transactions. However, a general assumption is that each
concurrent process uses about 20 locks. For more information about
sp_configure, see Chapter 12, ‘‘Fine-Tuning Performance and
Operations’’.

Indexed Not Indexed

Statement Table
Lock

Page
Lock

Table
Lock

Page
Lock

select IS S IS S

select with holdlock IS S S -

update IX U, X X -

delete IX U, X X -

IS = intent shared, IX = intent exclusive, S = shared, U = update, X = exclusive

Table 13-2: Summary of Locks for select, update and delete Statements

13-16 Locking

Locking in SQL Server SYBASE SQL Server Release 10.0

Example of Locking

This section describes the sequence of locks applied by SQL Server
for the two transactions used at the beginning of this chapter:

T1 Event Sequence T2

begin transaction

update account
set balance = balance - 100
where acct_number = 25

update account
set balance = balance + 100
where acct_number = 45

commit transaction

T1 and T2 start

T1 gets exclusive lock
and updates account

T2 tries to query
account but must
wait until T1 ends

T1 keeps updating
account and gets

more exclusive locks

T1 ends and releases
its exclusive locks

T2 gets shared locks,
queries account, and

ends

begin transaction

select sum(balance)
from account
where acct_number < 50

commit transaction

Figure 13-7: Locking Example Between Two Transactions

System Administration Guide 13-17

SYBASE SQL Server Release 10.0 Locking in SQL Server

The following sequence of locks assumes an index exists on the
acct_number column of the account table, a default isolation level of 1,
and 10 rows per data page (50 rows divided by 10 equals 5 data
pages):

If no index exists for acct_number, SQL Server applies exclusive table
locks for T1 instead of page locks:

T1 Locks T2 Locks

Update lock page 1
Exclusive lock page 1
Intent exclusive table lock on account
Update lock page 5
Exclusive lock page 5
Release all locks at commit

Shared lock page 1 denied, wait for release

Shared lock page 1, release lock page 1
Intent shared table lock on account
Shared lock page 2, release lock page 2
Shared lock page 3, release lock page 3
Shared lock page 4, release lock page 4
Shared lock page 5, release lock page 5
Release intent shared table lock

Table 13-3: Sequence of Locks at Isolation Level 1

T1 Locks T2 Locks

Exclusive table lock on account
Release exclusive table lock at commit

Shared lock page 1 denied, wait for release

Shared lock page 1, release lock page 1
Intent shared table lock on account
Shared lock page 2, release lock page 2
Shared lock page 3, release lock page 3
Shared lock page 4, release lock page 4
Shared lock page 5, release lock page 5
Release intent shared table lock

Table 13-4: Sequence of Locks at Isolation Level 1 with No Index

13-18 Locking

Locking in SQL Server SYBASE SQL Server Release 10.0

If you add a holdlock or make isolation level 3 the default using the
transaction isolation level option for transaction T2, the lock sequence is
as follows (assuming an index exists for acct_number):

If you add holdlock or make transaction isolation level 3 for T2 and no index
exists for acct_number, SQL Server applies table locks for both
transactions instead of page locks:

Viewing Locks with sp_lock

To get a report on the locks currently being held on SQL Server, use
the system procedure sp_lock. For example:

sp_lock

T1 Locks T2 Locks

Update lock page 1
Exclusive lock page 1
Intent exclusive table lock on account
Update lock page 5
Exclusive lock page 5
Release all locks at commit

Shared lock page 1 denied, wait for release

Shared lock page 1
Intent shared table lock on account
Shared lock page 2
Shared lock page 3
Shared lock page 4
Shared lock page 5
Release all locks at commit

Table 13-5: Sequence of Locks at Isolation Level 3

T1 Locks T2 Locks

Exclusive table lock on account
Release exclusive table lock at commit

Shared table lock denied, wait for release

Shared table lock on account
Release shared table lock at commit

Table 13-6: Sequence of Locks at Isolation Level 3 with No Index

System Administration Guide 13-19

SYBASE SQL Server Release 10.0 Deadlocks and Concurrency in SQL Server

The class column will dispaly the cursor name for locks
associated with a cursor for the current user and the cursor id
for other users.
spid locktype table_id page dbname class
---- ------------ ---------- ---- ------ ---------------
1 Ex_intent 1308531695 0 master Non cursor lock
1 Ex_page 1308531695 761 master Non cursor lock
5 Ex_intent 144003544 0 userdb Non cursor lock
5 Ex_page 144003544 509 userdb Non cursor lock
5 Ex_page 144003544 1419 userdb Non cursor lock
5 Ex_page 144003544 1420 userdb Non cursor lock
5 Ex_page 144003544 1440 userdb Non cursor lock
5 Sh_page 144003544 1440 userdb Non cursor lock
5 Sh_table 144003544 0 userdb Non cursor lock
5 Update_page 144003544 1440 userdb Non cursor lock
4 Ex_table 240003886 0 pubs2 Non cursor lock
4 Sh_intent 112003436 0 pubs2 Non cursor lock
4 Ex_intent-blk 112003436 0 pubs2 Non cursor lock

The locktype column indicates not only whether the lock is a shared
lock (“Sh” prefix), an exclusive lock (“Ex” prefix) or an “update”
lock, but also whether it is held on a table (“table” or “intent”), or on
a “page”.

A “blk” suffix indicates that this process is blocking another process
which needs to acquire a lock. As soon as this process completes, the
other process(es) move forward. A “demand” suffix indicates that a
process will acquire an exclusive lock as soon as all current shared
locks are released.

Information about Blocked Processes in sp_who

The system procedure sp_who reports on system processes. If a user’s
command is being blocked by locks held by another process:

• The status column shows “lock sleep”

• The blk column shows the process ID of the process that holds the
lock or locks

Deadlocks and Concurrency in SQL Server

A deadlock occurs when two users each have a lock on a separate
object. Each wants to acquire an additional lock on the other user’s
object. When this happens, the first user is waiting for the second to
let go of the lock, but the second user will not let it go until the lock
on the first user’s object is released.

13-20 Locking

Deadlocks and Concurrency in SQL Server SYBASE SQL Server Release 10.0

For example:

If transactions T9 and T10 execute simultaneously and both
transactions acquire exclusive locks with their initial update
statements, they become deadlocked waiting for each other to
release their locks, which won’t happen until the commit transaction.

SQL Server detects deadlocks and chooses the user whose process
has accumulated the least amount of CPU time as the victim. SQL
Server rolls back that user’s transaction, notifies the application
program of this action with message number 1205, and allows the
other users’ processes to move forward.

In a multi-user situation, each user’s application program should
check every transaction for message 1205. It indicates that the user
was selected as the victim of a deadlock. The application program
must restart that transaction.

Avoiding Deadlocks

It is possible to encounter deadlocks when many long-running
transactions are executed at the same time in the same database.
Deadlocks become more common as the lock contention increases
between those transactions (decreasing concurrency). Reducing lock
contention, such as avoiding table locks and not holding shared
locks, is described at the end of the chapter.

T9 Event Sequence T10

begin transaction

update savings
set balance = balance - 250
where acct_number = 25

update checking
set balance = balance + 250
where acct_number = 45

commit transaction

T9 and T10 start

T9 gets exclusive lock
for savings while T10

gets exclusive lock
for checking

T9 waits for T10 to
release its lock while
T10 waits for T9 to

release its lock;
deadlock occurs

begin transaction

update checking
set balance = balance - 75
where acct_number = 45

update savings
set balance = balance + 75
where acct_number = 25

commit transaction

Figure 13-8: Deadlocks in Transactions

System Administration Guide 13-21

SYBASE SQL Server Release 10.0 Locking and Performance of SQL Server

Well-designed applications can avoid deadlocks by always acquiring
locks in the same order. Updates to multiple tables should always be
performed in the same order, with no table updated twice.

For example, the transactions described in Table 13-8 could avoid
their deadlock by updating either the savings or checking table first in
both transactions. That way, one transaction gets the exclusive lock
first and proceeds, while the other transaction waits to receive its
exclusive lock on the same table when the first transaction ends.

SQL Server also avoids deadlocks by applying the following locks:

• Update page locks permit only one exclusive page lock at a time.
Other update or exclusive locks must wait until that exclusive
lock is released before accessing the page. However, update locks
affect concurrency since the net effect is that all updates on a page
happen only one at a time.

• Intent table locks act as a place holder when shared or exclusive
page locks are acquired. They inform other transactions that need
table locks whether or not they can be granted without having the
server scan the page lock queue. It also helps avoid lock collisions
between page level locks and table level locks.

Locking and Performance of SQL Server

How locking affects the performance of SQL Server is directly related
to the issue of concurrency. An increase in the number of concurrent
users of a server may also increase lock contentions which decreases
performance. Locks affect performance when:

• Processes wait for locks to be released

Any time a process waits for another process to complete its
transaction and release its locks, the overall response time and
throughput is affected. This is what we mean by lock contention.

• Transactions result in frequent deadlocks

As described earlier, any deadlock causes one transaction to be
aborted which must then be restarted by the application; this
severely affects the throughput of applications. Deadlocks
cannot be completely avoided. However, redesigning the way
transactions access the data can help reduce their frequency.

• Creating indexes locks tables

Creating a clustered index locks all users out of the table until
the index is created. Creating a nonclustered index locks out all

13-22 Locking

Locking and Performance of SQL Server SYBASE SQL Server Release 10.0

updates until it is created. Either way, you should create indexes
at time when there is little other activity on your server.

The next section provides some tips on reducing lock contention to
increase your server’s performance.

Reducing Lock Contention

Redesigning the tables that have the highest lock contention may
also improve performance. For example, assume a table has no index
on one of its columns. Any update specifying that column in its
search argument generates a table lock. Table locks generate more
lock contentions than page locks, since no other process can then
access the table. By creating an index on that column, those updates
first use page locks, improving the concurrency in accessing the
table.

Another way to reduce contention is by decreasing the fillfactor of
your indexes. fillfactor (defined by either sp_configure or create index)
determines how full SQL Server makes each data page when it is
creating a new index on existing data. When there is more empty
space in the index and leaf pages, the chances of lock contention are
reduced.

As the keys are spread out over more pages, it becomes more likely
that a page you want is not the page someone else also needs. In
addition, since fillfactor helps reduce page splits, exclusive locks are
also minimized on the index, improving performance. For more
information about fillfactor, see Chapter 12, ‘‘Fine-Tuning
Performance and Operations’’.

The following provides additional guidelines to reducing lock
contention:

• Avoid “hot spots.”

“Hot spots” occur when all updates take place at a certain page,
as in a “heap” (non-indexed table) where all additions happen at
the last page. For example, a history table with no index which is
updated by everyone will always have lock contentions on the
last page.

One solution is to create separate history tables for various
groups of users, which can reduce the wait on the page. You can
also create a clustered index to distribute the data across the
table.

• Avoid writing transactions which include user interaction.

System Administration Guide 13-23

SYBASE SQL Server Release 10.0 Locking and Performance of SQL Server

Since SQL Server holds some locks until the transaction
commits, if a user can hold up the commit (even for a short
time), there will be higher lock contention.

• Keep transactions short.

The longer the transaction, the longer exclusive or update locks
are held. This blocks other activity and leads to more possible
deadlocks.

• Keep transactions in one batch.

Network interaction during a transaction can introduce unnec-
essary delays in completing the transaction and releasing its
locks.

• Use holdlock only when necessary.

Updates by other transactions may be delayed until a trans-
action with a holdlock releases its shared lock at the end of the
transaction. Use holdlock only to enforce isolation level 3 when
“non-repeatable reads” or “phantoms” may interfere with your
results.

13-24 Locking

Locking and Performance of SQL Server SYBASE SQL Server Release 10.0

System Administration Guide 14-1

14. Managing Multiprocessor Servers

Introduction

SQL Server implements a Virtual Server Architecture, enabling it to
take advantage of the parallel processing feature of symmetric
multiprocessing (SMP) systems. SQL Server can be run as a single
process or as multiple cooperating processes, depending on the
number of CPUs available and the demands placed on the server.
This chapter describes:

• The target machine architecture for the SMP SQL Server

• SQL Server architecture for SMP environments

• SQL Server task management in the SMP environment

• Managing multiple engines

• Application design issues

Definitions

Here are the definitions of several terms used in this chapter:

• Process: An execution environment scheduled onto physical
CPUs by the operating system.

• Engine: A process running a SQL Server that communicates with
the other SQL Server processes via shared memory. An engine
can be thought of as one CPU’s worth of processing power. It
does not represent a particular CPU. Also referred to as “server
engine”.

• Task: An execution environment within the SQL Server
scheduled onto engines by the SQL Server.

• Affinity: Describes a process in which a certain SQL Server task
runs only on a certain engine, or that a certain engine runs only
on a certain CPU.

Target Architecture

The SMP environment product is intended for machines with the
following features:

• A symmetric multiprocessing operating system

14

14-2 Managing Multiprocessor Servers

Target Architecture SYBASE SQL Server Release 10.0

• Shared memory over a common bus

• 1-32 processors

• No master processor

• Very high throughput

SQL Server consists of one or more cooperating processes (called
engines), all running the server program in parallel. See Figure 14-1.

Only one of the engines, engine 0, handles tasks involving network
management; otherwise, all engines are peers. The engines
communicate via shared memory.

Clients CPUs Disks

Operating System

Registers
File Descriptors/
Channels

Engine 0
Registers
File Descriptors/
Channels

Engine 1
Registers
File Descriptors/
Channels

Engine 2

Program Memory

Shared Executable

Data Memory

Shared Memory

Figure 14-1: SMP Environment Architecture

System Administration Guide 14-3

SYBASE SQL Server Release 10.0 Target Architecture

The server engines perform all database functions, including
updates and logging. SQL Server, not the operating system,
dynamically schedules client tasks onto available engines. When an
engine becomes available, it runs any runnable task.

The operating system schedules the engine processes onto physical
processors. Any available CPU is used for any engine; there is no
affinity between engines and CPUs. The processing is called
symmetric because the lack of affinity between processes and CPUs
creates a symmetrically balanced load

SQL Server Task Management for SMP

Figure 14-2: SQL Server Task Management in the SMP Environment
illustrates SQL Server task management. Here is a brief description
of the process:

1. A client application issues a login request. In response, SQL
Server creates a user task to handle work from the client.

2. The client presents SQL Server with work to do, that is, a series
of Transact-SQL commands.

3. SQL Server adds the client’s user task to the runnable task
queue. The server engines compete for the user task at the head
of the task queue.

4. The server engine that takes the user task from the queue
converts the Transact-SQL commands into low level steps, such
as disk I/O.

5. The engine executes each step until the task completes or blocks
while waiting for I/O or locking. When the task blocks, it yields
the server engine to run other user tasks. Once the block is
resolved (i.e., disk I/O completes or a lock is acquired), the user
task is again added to the runnable task queue.

6. After the task blocks for the last time, it continues executing until
it finishes. At that time the user task yields the server engine and
moves to the sleeping task queue until the client presents the
server with more work.

14-4 Managing Multiprocessor Servers

Configuring an SMP Environment SYBASE SQL Server Release 10.0

Figure 14-2: SQL Server Task Management in the SMP Environment

The SMP SQL Server is designed in such a way that applications and
users see a single database service, no matter how many engines and
processors there are.

Configuring an SMP Environment

Configuration of the SMP environment is much the same as in the
uniprocessor environment, although SMP machines are typically
bigger and handle many more users. The SMP environment provides
the additional ability to control the number of engines.

Clients Disks

Operating System

Registers
File Descriptors/
Channels

Engine 0
Registers
File Descriptors/
Channels

Engine 1
Registers
File Descriptors/
Channels

Engine 2

1

4 5 6 7

2 3

2
RUNNING

5
RUNNING

1
RUNNING

RUNNABLE
QUEUE

6

3

SLEEP QUEUE

4

7

Waiting for disk I/O

Waiting for lock

System Administration Guide 14-5

SYBASE SQL Server Release 10.0 Configuring an SMP Environment

Managing Engines

To achieve optimum performance from an SMP system, you must
maintain the right number of engines.

An engine represents a certain amount of CPU power. It is a
configurable resource like memory. An engine does not represent a
particular CPU.

Resetting the Number of Engines

When you create a new master device (specifically, when you run
buildmaster), or when you start an SMP server for the first time on a
database that has been upgraded from an earlier release, the system
is configured for a single engine. To engage multiple engines, you
must reset the number of engines the first time you start the server.
You may also want to reset the number of engines at other times.

For example:

• You might want to increase the number of engines if current
performance is not adequate for an application and there are
enough CPUs on the machine.

• You might want to decrease the number of engines if a hardware
failure disables CPUs on the machine.

The max online engines configuration variable controls the number of
engines. Reset this configuration variable with the sp_configure system
procedure. For example, to set the number of engines to 3:

1. Issue the following command:

sp_configure "max online engines", 3

2. Run the Transact-SQL reconfigure command

3. Stop and restart the server.

Repeat these steps whenever you need to change the number of
engines. Engines other than engine 0 are brought on line after
recovery is complete.

The min online engines configuration variable is not used in this release,
and you cannot currently specify the minimum number of engines.

Choosing the Right Number of Engines

It is important to choose the right number of engines. Here are some
pointers for choosing how many engines to use:

14-6 Managing Multiprocessor Servers

Managing Disks SYBASE SQL Server Release 10.0

• Never have more engines than CPUs. Doing so may slow
performance. If a CPU goes off line, use sp_configure to reduce the
max online engines configuration variable by one, run reconfigure, and
restart the server.

• Have only as many engines as usable CPUs. If there is a lot of
processing by the client or other non-server processes, then one
engine per CPU may be excessive. Remember, too, that the
operating system may take up part of one of the CPUs.

• Have enough engines. It is good practice to start with few
engines and add additional ones when the existing CPUs are
almost fully used. If there are too few engines, the capacity of the
existing engines will be exceeded and bottlenecks may result.

Monitoring CPU Usage

To maintain the correct number of engines, monitor CPU usage with
an operating system utility. Consult the System Administration Guide
Supplement for the appropriate utility for your operating system.

Managing Memory

The memory configuration variable may require special attention in
SMP sites.

Not all platforms require a higher memory configuration variable
than before. If your platform does, the installed value of the memory
configuration variable reflects this, so you may never need to adjust
it. If error message 701,

There is insufficient memory to run this query

appears frequently in the error log and at the client terminal, you
may wish to increase the amount of memory available.

Managing Disks

The additional processing power of the SMP product may increase
demands on the disks. Therefore, it is best to spread data across
multiple devices for heavily used databases. Specify these devices
when using the create database command. (See Chapter 14,
‘‘Managing Multiprocessor Servers’’, for a discussion of create
database.)

System Administration Guide 14-7

SYBASE SQL Server Release 10.0 Application Design Considerations

Application Design Considerations

The SMP SQL Server is compatible with uniprocessor SQL Server.
Applications that run on uniprocessor servers should run on SMP
servers as well.

Concurrency

Because the increased throughput of the SMP SQL Server makes it
more likely that multiple processes may try to access a data page
simultaneously, it is especially important to follow principles of good
database design in order to avoid contention. The following are some
of the application design considerations that are especially
important in an SMP environment.

Multiple Indexes

The increased throughput of SMP may result in increased lock
contention when tables with multiple indexes are updated. Allow no
more than two or three indexes on any table that will be updated
often.

Adjusting the fillfactor for create index Commands

You may need to adjust the fillfactor in create index commands. Because
of the added throughput with SMP, setting a lower fillfactor may
reduce contention for the data pages.

Transaction Length

Transactions that include many statements or take a long time to run
may result in increased lock contention. Keep transactions as short as
possible.

Temporary Tables

Temporary tables (tables in tempdb) do not cause contention, because
they are associated with individual users and are not shared.

14-8 Managing Multiprocessor Servers

Application Design Considerations SYBASE SQL Server Release 10.0

System Administration Guide 15-1

15. Managing Remote Servers

Users on a local SQL Server can execute stored procedures on a remote
SQL Server. Executing a remote procedure call sends the results of the
remote process to the calling process—usually the user’s screen. This
chapter discusses the steps the System Administrator and System
Security Officer of each SQL Server must execute to enable remote
procedure calls. They are:

On the local server:

• Both the local server and remote server must be listed in the
system table master..sysservers (with sp_addserver). This must be
done by a System Security Officer.

• The remote server must be listed in the interfaces file for the local
server. (The interfaces file, set up when SQL Server is installed,
lists the names and addresses of all the servers you can access.)

On the remote server:

• The server originating the remote procedure call must be listed in
the sysservers table (with sp_addserver). This is done by a System
Security Officer.

• The user originating the remote procedure must be allowed
access to the server (with sp_addlogin and sp_addremotelogin).
sp_addlogin is executed by a System Security Officer,
sp_addremotelogin by a System Administrator.

• The remote login name must be added as a user of the
appropriate database and must have permission to execute the
procedure. (If execute permission is granted to “public,” the user
does not need to be granted specific permission.) Figure 15-1
illustrates the steps.

15

15-2 Managing Remote Servers

Managing Remote Servers SYBASE SQL Server Release 10.0

Managing Remote Servers

Four system procedures are used to manage remote servers:

• sp_addserver: Adds a server name to master..sysservers

• sp_dropserver: Drops a server name from master..sysservers

• sp_helpserver: Displays information about servers

• sp_serveroption: Displays or changes server options

Adding a Remote Server

The system procedure sp_addserver adds entries to the sysservers table.
On the server originating the call, you must add an entry for the local
server, and an entry for each remote server that your server will call.
Only a System Security Officer can execute sp_addserver. When you
create entries for a remote server, you can choose to:

• Always refer to them by the name listed in the interfaces file, or

• Provide a local name for the remote server. For example, if the
name in the interfaces file is “MAIN_PRODUCTION,” you may want
to call it simply “main.”

User joe on ROSE needs to access stored procedures on ZINNIA

Rose

sp_addserver ROSE, local
sp_addserver ZINNIA

Interfaces files:
must have an entry for ZINNIA

sp_addserver ROSE
sp_addlogin joe
sp_addremotelogin ROSE, joe

sp_adduser joe (in appropriate db)
grant execute on

procedure_name to joe

Zinnia

Figure 15-1: Setting Up Servers to Allow Remote Procedure Calls

System Administration Guide 15-3

SYBASE SQL Server Release 10.0 Managing Remote Servers

Here is the syntax:

sp_addserver server_name [{, local | null}
[, network_name]]

• The server_name parameter provides the local “call name” for the
remote server. Users will type this name when they issue remote
procedure calls. If this name is not the same as the remote
server’s name in the interfaces file, you must provide that name
as the third parameter, network_name.

The remote server must be listed in the interfaces file on the local
machine. If it’s not listed, copy the interfaces file entry from the
remote server and append it to your existing interfaces file. Be
sure to keep the same port numbers.

• The local option identifies the server being added as a local server.
The local value is used only once after start-up, or after a reboot, to
identify the local server name so that it can appear in messages
printed out by SQL Server. null specifies that this server is a
remote server.

• For network_name, give the name for the remote server that is
listed in the interfaces file for the server named srvname. This
optional third argument permits you to establish local aliases for
other SQL Servers, Open Servers, or Backup Servers that you may
need to communicate with. If you do not specify a network_name,
it defaults to srvname.

The server originating a remote procedure call must have a local
entry. You must restart SQL Server to set the value of the global
variable @@servername.

The following examples create entries for the local server named
DOCS:

sp_addserver DOCS, local

This example creates an entry for a remote server named GATEWAY:

sp_addserver GATEWAY

Here’s how a user could run sp_who on GATEWAY:

GATEWAY.sybsytemprocs.dbo.sp_who

or

GATEWAY...sp_who

The following example gives a remote server called
MAIN_PRODUCTION the local alias “main”:

sp_addserver main, null, MAIN_PRODUCTION

15-4 Managing Remote Servers

Managing Remote Servers SYBASE SQL Server Release 10.0

Users can then type:

main...sp_who

Managing Remote Server Names

The master.dbo.sysservers table has two name columns:

• srvname is the name that users must supply when executing
remote procedure calls. srvname must be unique on each server.

• srvnetname is the server’s network name, which must match the
name in the interfaces file. srvnetname does not have to be unique,
you can have more than one local name for a remote server.

If you need to add or drop servers from your network, you can use
sp_addserver to update the srvnetname. If you need to remove the
server MAIN_PRODUCTION from the network, and move your remote
applications to TEMP_PRODUCTION, here’s how to change the
network name, while keeping the local alias:

sp_addserver main, null, TEMP_PRODUCTION

The sp_addserver procedure prints an informational message to tell
you that it is changing the network name of an existing server entry.

Dropping Remote Servers: sp_dropserver

The sp_dropserver system procedure drops servers from sysservers. The
syntax is:

sp_dropserver server_name [, droplogins]

Only System Security Officers can execute sp_dropserver. The droplogins
option allows you to drop a remote server and all of that server’s
remote login information in one step. If you don’t use the droplogins
option, you cannot drop a server which has remote logins associated
with it. This statement drops the GATEWAY server, and all of the
remote logins associated with it:

sp_dropserver GATEWAY, droplogins

The droplogins option isn’t needed if you wish to drop the local
server’s entry; that entry won’t have remote login information
associated with it.

System Administration Guide 15-5

SYBASE SQL Server Release 10.0 Managing Remote Servers

Setting Server Options: sp_serveroption

The sp_serveroption system procedure sets the server options timeouts
and net password encryption, which affect connections with remote
servers. These options do not affect SQL Server to Backup Server
communication.

The timeouts Option

timeouts disables and enables the normal timeout code used by the
local server, so the site connection handler does not automatically
drop the physical connection after a minute with no logical
connection. This option can be set only by a System Administrator.

By default, timeouts is set to TRUE, and the site handler process that
manages remote logins times out if there has been no remote user
activity for one minute. By setting timeouts to FALSE on both of the
servers involved in remote procedure calls, the automatic timeout is
disabled. This example changes the timeouts option to FALSE:

sp_serveroption GATEWAY, "timeouts", false

Once you set timeouts to FALSE on both servers and a user executes a
remote procedure call in either direction, the site handler on each
machine runs until one of the servers is shut down. (When the server
is brought up again, the option remains FALSE, and the site handler
will be re-established the next time a user executes a remote
procedure call.) If users on the server execute remote procedure calls
frequently, it’s probably efficient in terms of system resources to set
this option to FALSE, since there is some system overhead involved in
setting up the physical connection.

The net password encryption Option

net password encryption specifies whether connections with a remote
server are to be initiated with a client-side password encryption
handshake or with the normal (unencrypted password) handshake
sequence. The default is FALSE. This option can be set only by a
System Security Officer.

If net password encryption is set to TRUE, the following occurs:

1. The initial login packet is sent without passwords.

2. The client indicates to the remote server that encryption is
desired.

3. The remote server sends back an encryption key, which the client
uses to encrypt its plaintext passwords.

15-6 Managing Remote Servers

Adding Remote Logins SYBASE SQL Server Release 10.0

4. The client then encrypts its own passwords, and the remote
server uses the key to authenticate them when they arrive.

This example sets this option to TRUE:

sp_serveroption GATEWAY, "net password encryption",
true

Setting this option has no effect on SQL Server’s interaction with
Backup Server.

Getting Information on Servers: sp_helpserver

The system procedure sp_helpserver reports on servers. When it is
used without an argument, it provides information on all the servers
listed in sysservers. It can take a server name as an argument, and
provides information on just that server.

sp_helpserver [server_name]

sp_helpserver checks for both srvname and srvnetname in the
master..sysremotelogins table.

Adding Remote Logins

The System Security Officer and System Administrator of any SQL
Server share control over which remote users can access the server,
and what identity the remote users will assume. The System
Administrator adds remote logins with the sp_addremotelogin system
procedure. The System Security Officer controls whether password
checking will be required with the sp_remoteoption system procedure.

Mapping User’s Server IDs: sp_addremotelogin

Logins from a remote server can be mapped to a local server in three
ways:

• A particular remote login can be mapped to a particular local
login name. For example, the user “joe” on the remote server
might be mapped to “joesmith”, user “judy” to “judyj”, and so
forth.

• All logins from one remote server can be mapped to one local
name. For example, all users sending remote procedure calls from
the MAIN_PRODUCTION server might be mapped to “remusers”.

• All logins from one remote server can use their remote names.

System Administration Guide 15-7

SYBASE SQL Server Release 10.0 Adding Remote Logins

The first option can be combined with the other two options, and its
particular mapping takes precedence over the other two more
general mappings. The second two options are mutually exclusive;
you may use either, but not both of them.

The system procedure sp_addremotelogin adds remote logins. The
syntax is:

sp_addremotelogin remoteserver [, localname
[, remotename]]

Only a System Administrator can execute sp_addremotelogin. If the
local names are not listed in master..syslogins, you must first add them
as SQL Server logins with sp_addlogin.

Mapping Remote Logins to Particular Local Names

The following example maps the login named “pogo” from a remote
system to the local login name “bob.” The user logs into the remote
system as “pogo”; whenever that user executes remote procedure
calls from GATEWAY, the local system maps the remote login name to
“bob.”

sp_addlogin bob

sp_addremotelogin GATEWAY, bob, pogo

Mapping All Remote Logins to One Local Name

The following example creates an entry that maps all remote login
names to the local name “albert.” All names are mapped to “albert,”
except those with specific mapping, as described above. For
example, if you mapped “pogo” to “bob,” and then the rest of the
logins to “albert,” “pogo” still maps to “bob.”

sp_addlogin albert

sp_addremotelogin GATEWAY, albert

◆ WARNING!
Mapping more than one remote login to a single local login is not
recommended, as it reduces individual accountability on the server.
Audited actions can be traced only to the local server login, not to the
individual logins on the remote server.

15-8 Managing Remote Servers

An Example of Remote User Mapping SYBASE SQL Server Release 10.0

Remote Logins Keeping Remote Names

If you want remote users to keep their remote login names while
using a local server, first use sp_addlogin to create a login for each login
from the remote server. Then, use sp_addremotelogin for the server as a
whole:

sp_addremotelogin GATEWAY

This command creates an entry in master..sysremotelogins with a null
value for the remote login name, and value of -1 for the suid.

The option of mapping individual remote logins to different local
logins takes precedence over the process of giving all remote logins
the same name, so you can use some combination of these two
options. However, you cannot combine the second two options; they
are mutually exclusive. If you want to change from one method to
the other, you must use sp_dropremotelogin to remove the old mapping.

An Example of Remote User Mapping

Assume that you have the following servers listed in
master..sysservers on the SALES server:

select srvid, srvname from sysservers

srvid srvname
----- ----------
 0 SALES
 1 CORPORATE
 2 MARKETING
 3 PUBLICATIONS
 4 ENGINEERING

and the following entries in master..sysremotelogins:

remoteserverid remoteusername suid
-------------- -------------- ------

1 joel 3
1 freddy 3
1 NULL 4
3 NULL 5
4 NULL -1

and these entries in master..syslogins:

select suid, name from syslogins

System Administration Guide 15-9

SYBASE SQL Server Release 10.0 Password Checking for Remote Users: sp_remoteoption

suid name
------ ------------

1 sa
2 probe
3 vp
4 peon
5 writer

The effect is:

• The logins “joel” and “freddie” from the CORPORATE server are
known as “vp.”

• All other logins from CORPORATE are mapped to the name
“peon.”

• All logins from PUBLICATIONS are mapped to “writer.”

• All logins from ENGINEERING are looked up in master..syslogins by
their remote user names.

• Users from MARKETING cannot run remote procedure calls on this
server, since there is no entry for MARKETING in sysremotelogins.

The remote user mapping procedures and the ability to set
permissions for individual stored procedures give you control over
which remote users can access local procedures. For example, the
“vp” login from CORPORATE could execute certain local procedures,
while all of the other logins from CORPORATE could only execute the
procedures for which “peon” had permission.

➤ Note
Note that in many cases, the passwords for “joel” and “freddie” on the corporate

server must match the password for the SALES login name “vp,” as explained

in the next section.

Password Checking for Remote Users: sp_remoteoption

The system procedure sp_remoteoption determines whether passwords
will be checked when remote users log into the local server. By
default, passwords are verified (“untrusted” mode). In trusted mode,
the local server accepts remote logins from other servers and front-
end applications without user-access verification for the particular
login.

15-10 Managing Remote Servers

Getting Information about Remote Logins SYBASE SQL Server Release 10.0

◆ WARNING!
Using the trusted mode of sp_remoteoption reduces the security of your
server, as passwords from such “trusted” users are not verified.

When sp_remoteoption is used with arguments, it changes the mode for
the named user. Here is the syntax:

sp_remoteoption [remoteserver , loginame , remotename ,
optname , {true | false}]

Only a System Security Officer can execute sp_remoteoption.

This example sets trusted mode for the user “bob”:

sp_remoteoption GATEWAY, pogo, bob, trusted,
true

The effects of the “untrusted” mode depend on the user’s client
program. isql and some user applications require that logins have the
same password on the remote server and the local server. Open
Client applications can be written to allow local logins to have
different passwords on different servers.

In “untrusted” mode, if you want to change your password you
must change it on all the remote systems you access before changing
it on your local server.This is because of the password checking; if
you change your password on the local server first, when you issue
the remote procedure call to execute sp_password on the remote server
your passwords will no longer match. The syntax for changing your
password on the remote server is:

remote_server ...sp_password old_passwd , new_passwd

And on the local server:

sp_password old_passwd , new_passwd

See ‘‘Changing Passwords: sp_password’’ on page 4-13 for more
information about changing your password.

Getting Information about Remote Logins

The stored procedure sp_helpremotelogin prints information about the
remote logins on a server. The following example shows the remote
login “pogo” mapped locally to login name “bob,” with all other
remote logins keeping their remote names.

sp_helpremotelogin

System Administration Guide 15-11

SYBASE SQL Server Release 10.0 Configuration Variables for Remote Logins

server remote_user_name local_user_name options
------- ---------------- ----------------- --------
GATEWAY **mapped locally** **use local name** untrusted
GATEWAY pogo bob untrusted

Configuration Variables for Remote Logins

Each SQL Server that allows remote logins to execute procedure calls
must have certain configuration variables set. These values are
changed with sp_configure, and the reconfigure command.

The values that affect remote procedure calls are: remote access, remote
logins, remote sites, remote connections, and pre-read packets. By default,
remote access is set to 1, and other values are set to reasonable defaults.
You can also accept default values for the last four of these variables
by resetting only remote access, executing reconfigure, and restarting the
server. These are the default settings:

The remote access configuration variable can be changed only by a
System Security Officer. The other variables can be changed only by
a System Administrator. Only a System Administrator can execute
the reconfigure command.

remote access

The remote access variable must be set to 1 to allow remote access to or
from a server, including access to the Backup Server:

sp_configure "remote access", 1

If you wish to disallow remote access at any time, the remote access
variable can be reset to 0:

sp_configure "remote access", 0

If you set remote access to 0, and then execute reconfigure, the run value
of the other four remote-access variables is also set to 0.

Configuration Variable Default
remote access 1
remote logins 20
remote sites 10
remote connections 20
pre-read packets 3

Table 15-1: Configuration Variables that Affect RPCs

15-12 Managing Remote Servers

Configuration Variables for Remote Logins SYBASE SQL Server Release 10.0

If you don’t use the default values, the values for the other remote
access configuration variables will depend on your system design
and applications.

Only a System Security Officer can set the remote access variable.

◆ WARNING!
You cannot perform database or transaction log dumps while the remote
access configuration variable is set to 0.

remote logins

The remote logins variable controls the number of active user
connections from this site to remote servers. Only a System
Administrator can set remote logins. This command increases remote
logins to 50:

sp_configure "remote logins", 50

remote sites

The remote sites variable controls the number of simultaneous remote
sites that can access this server. All accesses from an individual site
are managed by one site handler; this variable controls the number of
site handlers, not the number of individual simultaneous procedure
calls. If you set remote sites to 5, and each site initiates three remote
procedure calls, you will have 5 site handler processes listed (use
sp_who to see them) for the 15 processes. Only a System
Administrator can set remote sites.

remote connections

The remote connections variable controls the limit on active connections
initiated to and from this server. This includes those initiated from
this server and those from remote sites to this server. Only a System
Administrator can set remote connections.

pre-read packets

All communication between two servers is handled through one site
handler to reduce the needed number of connections. This site

System Administration Guide 15-13

SYBASE SQL Server Release 10.0 Configuration Variables for Remote Logins

handler can pre-read and keep track of data packets for each user
before the user process that needs them is ready. The pre-read packets
variable controls how many packets a site handler will pre-read. The
default value 3 is adequate in virtually all cases; higher values can
use too much memory. Only a System Administrator can set pre-read
packets.

15-14 Managing Remote Servers

Configuration Variables for Remote Logins SYBASE SQL Server Release 10.0

System Administration Guide 16-1

16. Auditing

Introduction

Auditing is an important part of security in a database management
system. Through it, security-related system activity is recorded in an
audit trail, which can be used to detect penetration of the system and
misuse of resources. By examining the audit trail System Security
Officers can inspect patterns of access to objects in databases, and can
monitor the activity of specific users. Audit records are traceable to
specific users, enabling the audit system to act as a deterrent to users
attempting to misuse the system.

In the sections that follow, the audit system is discussed in detail,
including what is audited, how the system works, and how to
interpret the audit trail.

The Audit System

The audit system consists of:

• The sybsecurity database

• System procedures that set the various auditing options

• The audit queue, to which audit records are sent before they are
written to the audit trail

The sybsecurity Database

The sybsecurity database is essential to auditing in SQL Server. It is
created as part of the auditing installation process. It contains all
system tables found in the model database and two additional system
tables:

• sysaudits: the audit trail

• sysauditoptions: contains the global auditing choices

The contents of the audit trail is discussed in detail in ‘‘The Audit
Trail: sysaudits’’ on page 16-16.

16

16-2 Auditing

Installing the Audit System SYBASE SQL Server Release 10.0

The Auditing System Procedures

Auditing is managed with the following system procedures:

The Audit Queue

When an audited event occurs, an audit record first goes to the in-
memory audit queue, where it is held until it can be processed by the
audit process and added to the audit trail. As long as an audit record
is in the queue, it can be lost if the system crashes. However, if the
queue repeatedly becomes full, overall system performance is
affected: if the audit queue is full when a user process tries to
generate an audit record, the process sleeps until space in the queue
becomes available. Thus, there is a performance/risk trade-off that
must be considered when configuring the queue size.

You can configure the size of the audit queue with the audit queue size
option to sp_configure. See ‘‘audit queue size’’ on page 12-37 for
information on how to configure the size of the audit queue and
effects of different queue sizes.

Installing the Audit System

The audit system is installed with sybinit, the Sybase installation
program. Installation and sybinit are discussed in the SYBASE
Installation Guide for your platform.

System Procedure Description

sp_auditoption Enables and disables system-wide auditing and global
audit options.

sp_auditdatabase Establishes auditing of different types of events within a
database, or of references to objects within that database
from another database.

sp_auditobject Establishes selective auditing of accesses to tables and
views.

sp_auditsproc Audits the execution of stored procedures and triggers.

sp_auditlogin Audits a user’s attempts to access tables and views, or
the text of commands that the user executes.

sp_addauditrecord Allows users to enter user-defined audit records
(comments) into the audit trail.

Table 16-1: System Procedures Used to Manage Auditing Options

System Administration Guide 16-3

SYBASE SQL Server Release 10.0 Establishing Auditing

sybinit installs the sybsecurity database on its own device and the
sysaudits table on its own segment on that device. This allows you to
use the threshold manager to monitor the available space in
sysaudits. See ‘‘Archiving Audit Data’’ on page 16-19 for more
information.

◆ WARNING!
Do not put any objects into the sybsecurity database besides those that
are automatically installed there. Because sysaudits is so dynamic, you
must carefully monitor the space on its device. This is harder to do if
there are extra objects on the device.

Because it is assumed that there will be no extra activity in the
sybsecurity database, the trunc log on chkpt database option is turned on
automatically when sybsecurity is installed. This means that the log in
that database is truncated every time the checkpoint process occurs,
and the transaction log cannot be dumped or recovered. Inserts into
the sysaudits table are not logged.

Removing the Audit System

If you need to remove the audit system and reclaim the disk space,
follow this procedure:

1. Disable any current auditing with this command:

sp_auditoption "enable auditing", "off"

2. Remove the audit database with this command:

drop database sybsecurity

You cannot remove sybsecurity if auditing is enabled. Only a System
Security Officer can drop sybsecurity.

If at a later time you wish to reinstall the audit system, run sybinit
again and access the menus that install auditing.

Establishing Auditing

The System Security Officer manages the audit system. Only a user
who has been granted that role can:

• Execute any of the auditing system procedures (with the
exception of sp_addauditrecord)

16-4 Auditing

Establishing Auditing SYBASE SQL Server Release 10.0

• Read the audit trail

• Access the audit database

The System Security Officer who is going to manage the audit system
must also be granted access to the sybsecurity database.

Turning Auditing On and Off

Once you have installed the sybsecurity database and the auditing
system procedures, you can set all of the audit options as you wish.
No auditing actually occurs, however, until you turn auditing on for
the server as a whole using this command:

sp_auditoption "enable auditing", "on"

Turn server-wide auditing off with this command:

sp_auditoption "enable auditing", "off"

Turning off this option does not modify your auditing set-up, though
all auditing stops when enable auditing is set to off.

sp_auditoption is discussed in the following section.

Setting the Global Audit Options: sp_auditoption

The global audit options are those that affect the server as a whole.
They are enabled and disabled with sp_auditoption, and information
about their current settings is contained in the
sybsecurity..sysauditoptions system table.The available options and
their syntax are described in Table 16-2.

System Administration Guide 16-5

SYBASE SQL Server Release 10.0 Establishing Auditing

Option Action

enable auditing Enables or disables system-wide auditing. A System Security Officer must set the
enable auditing option to on before any other auditing can take place. Enabling or
disabling auditing automatically generates an audit record, so that you can bracket
time periods when auditing was enabled.

Syntax: sp_auditoption "enable auditing" [, {"on"|"off"}]

all Enables or disables all options except enable auditing simultaneously. enable auditing
must be set separately. For options that allow selective auditing for successful
and/or failed executions, setting all to on is equivalent to setting all options to on or
both, depending on the option.

Syntax: sp_auditoption "all" [, {"on"|"off"}]

logins Enables or disables auditing of successful (ok), failed (fail), or all (both) login attempts
by all users. To audit individual users, use sp_auditlogin.

Syntax: sp_auditoption "logins" [, {"ok"|"fail"|"both"|"off"}]

logouts Enables or disables auditing of all logouts from the server, including unintentional
logouts such as dropped connections.

Syntax: sp_auditoption "logouts" [, {"on"|"off"}]

server boots Enables or disables generation of an audit record when the server is rebooted.

Syntax: sp_auditoption "server boots" [, {"on"|"off"}]

rpc connections When this option is on, it generates an audit record whenever a user from another
host connects to the local server to run a procedure via a remote procedure call
(RPC). Auditing can be enabled for all connection attempts (both), successful
attempts only (ok), or failed attempts only (fail).

Syntax: sp_auditoption "rpc connections" [, {"ok"|"fail"|
 "both"|off"}]

roles Audits the use of the set role command to turn roles on and off. You can enable
auditing of all attempts (both), successful attempts only (ok), or failed attempts only
(fail). See Chapter 2, ‘‘Roles in SQL Server,’’’ for more information.

Syntax: sp_auditoption "roles" [, {"ok"|"fail"|"both"|"off"}]

{sa | sso | oper
| navigator
| replication}
commands

Audits the use of privileged commands—those requiring one of the roles for
execution. You can enable auditing for successful executions only, failed attempts
(where failure is due to the user lacking the proper role), or both. See “Roles” in the
SQL Server Reference Manual for a list of the commands that require the various roles.

Syntax: sp_auditoption "{sa|sso|oper|navigator|replication}
 commands" [, {"ok"|"fail"|"both"|"off"}]

Table 16-2: Global Auditing Options

16-6 Auditing

Establishing Auditing SYBASE SQL Server Release 10.0

The initial, default value of all options is “off.”

Examples

Using sp_auditoption with no parameters, like this:

sp_auditoption

or with the all option, like this:

sp_auditoption "all"

displays the current settings for all of the global audit options.

Using sp_auditoption with the name of any option and no other
parameters displays the current setting for that option. For example:

sp_auditoption "logins"

displays the current status of the logins option.

This command:

sp_auditoption "errors", "fatal"

establishes auditing of fatal errors.

This command:

sp_auditoption "logins", "both"

establishes auditing of all attempts to log into SQL Server, both
successful and unsuccessful. To audit individual users, use
sp_auditlogin.

errors Audits fatal errors (errors that break the user’s connection to the server and require
the client program to be restarted), nonfatal errors, or both kinds of errors. Fatal
errors do not include server internal fatal software errors (bus errors, segmentation
faults, etc.) In case of internal errors, information will be contained in the errorlog
file for the server.

Syntax: sp_auditoption "errors" [, {"nonfatal"|"fatal"
 |"both"|"off”}]

adhoc records Allows users to send text to the audit trail via the sp_addauditrecord command.

Syntax: sp_auditoption "adhoc records", {"on"|"off"}

Option Action

Table 16-2: Global Auditing Options (continued)

System Administration Guide 16-7

SYBASE SQL Server Release 10.0 Establishing Auditing

Auditing Users: sp_auditlogin

sp_auditlogin allows you to audit a SQL Server user’s attempts to
access tables and views in any database, and the text of commands
that the user sends to SQL Server.

Using sp_auditlogin with no parameters, like this:

sp_auditlogin

displays the audit status for all login names in the server.

Using sp_auditlogin with a login name and no other parameters, like
this:

sp_auditlogin bob

displays the audit status for that user.

Auditing a User’s Table and View Accesses

The syntax for auditing a user’s attempts to access tables and views
is:

sp_auditlogin [login_name [, "table" | "view"
[, "ok"|"fail"|"both"|"off"]]]

An access is the use of the select, insert, update, or delete command on a
table or view. The table option audits login_name’s attempts to access
tables in any database. view audits login_name’s attempts to access
views in any database. If you use table or view without the
ok|fail|both|off parameter, sp_auditlogin displays the status of table or
view auditing for the named user.

The ok parameter enables auditing for successful table or view
accesses only. fail establishes auditing of accesses that fail because the
user lacks permissions on an object. both establishes auditing of both
successful and failed accesses. off disables auditing of the named type
(table or view).

For example, this command:

sp_auditlogin "joe", "table", "both"

audits all of Joe’s attempts to access any table on the server. This
command:

sp_auditlogin joe, "table", "fail"

audits Joe’s attempts to access tables on which he has not been
granted permission.

16-8 Auditing

Establishing Auditing SYBASE SQL Server Release 10.0

This command:

sp_auditlogin bob, "table"

displays the status of table auditing for Joe.

Auditing the Text of a User’s Commands

The syntax for auditing the text of commands that a user sends to
SQL Server:

sp_auditlogin [login_name [, "cmdtext"
[, "on"|"off"]]]

Set cmdtext on to write the text of a user’s SQL Server commands to the
audit trail.

Using the cmdtext option without the final parameter, like this:

sp_auditlogin bob, "cmdtext"

displays the status of cmdtext auditing for Bob.

Auditing Databases: sp_auditdatabase

The sp_auditdatabase system procedure permits you to establish
selective auditing on databases. These are the auditable events that
can occur in or on a database:

• Use of the drop, grant, revoke, and truncate table commands within a
database

• Use of the drop database and use commands on a database

• Execution of SQL commands from within another database that
reference the audited database

sp_auditdatabase Syntax

The syntax of sp_auditdatabase is:

sp_auditdatabase [dbname [, {"ok"|"fail"|"both"|"off"}
[, "d u g r t o"}]]]

• If you use sp_auditdatabase with no parameters, it displays the
current audit status for all databases in the server.

• dbname is the name of the database for which to establish
auditing. If you use sp_auditdatabase with dbname and no other
arguments, it displays the audit settings for the specified
database.

System Administration Guide 16-9

SYBASE SQL Server Release 10.0 Establishing Auditing

• ok establishes auditing of successful executions of the commands
specified in the third parameter. fail audits access attempts that
fail because the user lacks permission to access the database. both
audits successful and failed executions. off turns off the specified
type of auditing for the named database.

• d, u, g, r, t, and o are the types of database events that you can audit.
They are:

Choose one or more, in any order. If none are specified, the ok |
fail | both |off argument applies to all event types.

For example, this command:

sp_auditdatabase pubs2, "ok", "du"

enables auditing of successful executions of the drop and use
commands on pubs2.

You can execute sp_auditdatabase more than once on a database, and
the options that you set will accumulate with each execution.
Therefore, you can set some options for success only, others for
failure only, and still others for both success and failure. For example,
this sequence:

sp_auditdatabase pubs2, "ok", "d"
go
sp_auditdatabase pubs2, "fail", "u"
go
sp_auditdatabase pubs2, "both", "gr"
go

Event
Type

Meaning

d Audits execution of the drop table, drop view, drop procedure, or drop
trigger commands within dbname, and execution of the drop
database command when dbname is being dropped.

u Audits execution of the use command on dbname.

g Audits execution of the grant command within dbname.

r Audits execution of the revoke command within dbname.

t Audits execution of the truncate table command within dbname.

o “Outside access”; audits execution of SQL commands from within
another database that refer to objects in dbname.

Table 16-3: Database Auditing Options

16-10 Auditing

Establishing Auditing SYBASE SQL Server Release 10.0

establishes auditing on pubs2 of successful drop commands, failed use
commands, and all grant and revoke commands.

If, later, you no longer wish to audit execution of the drop command,
issue this statement:

sp_auditdatabase pubs2, "off", "d"

If you wish to turn off all auditing of pubs2, use this command:

sp_auditdatabase pubs2, "off"

Auditing Tables and Views: sp_auditobject

sp_auditobject allows you to audit accesses of specified tables and
views. An access is the use of the select, insert, update, or delete
command on a table or view. You can establish auditing of specified
tables and views, or create default audit settings for newly-created
tables and views.

To establish auditing of an existing table or view, the syntax is:

sp_auditobject [owner .] objname, dbname
[, "ok"|"fail"|"both"|"off" [,"{d u s i}"]]

To establish default audit settings for future tables and views in the
current database, the syntax is:

sp_auditobject {"default table"|"default view"},
dbname [, "ok"|"fail"|"both"|"off"
[, "{d u s i}"]]

• If you are establishing auditing for an existing table or view, use
the objname parameter. objname is the name of an existing table or
view in the current database. If you are not the owner of the
object, you must qualify its name with the name of the owner, like
this:

"ownername.objname"

• If you are establishing default audit settings for future tables or
views in the current database, use the default table | default view
parameter. This specifies that these audit settings are to be the
defaults for any tables and views that will be created in the future.
These default settings are not applied to any tables or views that
exist at the time that sp_auditobject is executed. If you do not set any
default audit settings in a database, newly-created tables and
views will have no auditing options set initially.

System Administration Guide 16-11

SYBASE SQL Server Release 10.0 Establishing Auditing

• If you are using the objname parameter, dbname must be the name
of the current database. You must be in that database to execute
sp_auditobject, and you must also supply its name.

If you are using the default table | default view option, dbname can be
the name of any database.

• ok establishes auditing for accesses that are successful. fail audits
attempts to access the object that fail because the user has not
been granted permission on the object. both audits both types of
access attempts. off turns auditing off for the named table or view.

• The d u s i parameter indicates what kinds of access to audit. They
can be specified in any order, and you can specify any number of
them at a time. If you omit these parameters, all four event types
will be effected by the ok|fail|both|off parameter.The types of
access are:

Choose one or more, in any order. If none are specified, the ok |
fail | both |off argument applies to all four of the event types.

Auditing Indirect References to Objects

If the named table or view is referenced indirectly, such as through a
view or stored procedure, an audit record for that table or view is
generated only if a permission check is required. The rules governing
permission checks are as follows:

• If the owner of the stored procedure or view is also the owner of
the underlying table or view, the user of the stored procedure or
view is not required to have permissions on the underlying table
or view. No permission checking is performed on the underlying
object. Therefore, no audit record is generated when someone
uses this view or stored procedure, even though auditing is
enabled for the underlying table or view.

• If the creator of the stored procedure or view does not own the
underlying table or view, the user of the stored procedure or view
must have access permissions on the underlying table or view.

Parameter Meaning

d delete

i insert

s select

u update

Table 16-4: Types of Object Access

16-12 Auditing

Establishing Auditing SYBASE SQL Server Release 10.0

Permission checking is performed on the underlying object, and
an audit record is generated if that table or view is configured to
be audited.

See ‘‘Ownership Chains’’ on page 5-24 for information about
ownership chains.

Examples

This command:

sp_auditobject authors, pubs2, "both", "dui"

establishes auditing on the authors table in the pubs2 database. Both
successful and failed attempts to execute the delete, update, and insert
commands on authors will be audited.

You can execute sp_auditobject more than once on a table or view, and
the options that you set will accumulate with each execution.
Therefore, you can set some options for success only, others for
failure only, and still others for both success and failure. For example,
this sequence:

sp_auditobject titles, pubs2, "ok", "id"
go
sp_auditobject titles, pubs2, "fail", "u"
go

establishes auditing on the titles table so that successful executions of
the insert and delete commands will be audited, and failed attempts to
execute update commands will be audited.

This command:

sp_auditobject titles, pubs2, "off"

turns off all auditing on the titles table.

This command:

sp_auditobject publishers

displays the current audit settings for the publishers table.

This command:

sp_auditobject "default table", pubs2, "fail", "du"

establishes auditing of failed attempts to execute the delete and update
commands on all new tables in the pubs2 database. Any table created
after this command is executed will automatically have these audit
settings.

System Administration Guide 16-13

SYBASE SQL Server Release 10.0 Establishing Auditing

This command:

sp_auditobject "default view", pubs2

displays the default audit settings for views in the pubs2 database.

Auditing Stored Procedures: sp_auditsproc

The sp_auditsproc system procedure allows you to audit the execution
of stored procedures and triggers. The values of any parameters
passed to a stored procedure are also audited. You can establish
auditing of existing stored procedures or triggers, or create default
audit settings for future stored procedures and triggers.

The syntax to establish auditing of existing stored procedures and
triggers is:

sp_auditsproc { sproc_name | "all"},
dbname [, {"ok"|"fail"|"both"|"off"}]

The syntax to establish default audit settings for future stored
procedures and triggers in the current database is:

sp_auditsproc "default", dbname
[, {"ok"|"fail"|"both"|"off"}]

• If you are establishing auditing for an existing stored procedure
or trigger, use the sproc_name parameter. sproc_name is the name
of the stored procedure or trigger on which you want to establish
auditing. If you are not the owner of the object, you must qualify
its name with the owner’s name, like this:

"ownername.sproc_name"

If you wish to establish auditing for all existing triggers and
stored procedures in the current database, specify all.

• If you are establishing default audit settings for future stored
procedures and triggers in the current database, use the default
parameter. This specifies that these audit settings are to be the
defaults for any stored procedures and triggers that will be
created in the future. These default settings are not applied to any
stored procedures or triggers that exist at the time that
sp_auditsproc is executed. If you do not set any default audit
settings in a database, newly-created stored procedures and
triggers will not be audited.

• If you are using the sproc_name | all parameter, dbname must be
the name of the current database. You must be in this database to
execute sp_auditobject, and you must also supply its name.

16-14 Auditing

Establishing Auditing SYBASE SQL Server Release 10.0

If you are using the default parameter, dbname can be the name of
any database.

• ok establishes auditing for executions of the named stored
procedure or trigger that are successful. fail audits attempts to
execute the procedure that fail because the user has not been
granted permission on the stored procedure, or because the user
does not have permission on the underlying table or view.
(Permissions are not granted on triggers, so this option does not
apply to them.) both audits both types of execution attempts. off
turns auditing off for the named stored procedure or trigger.

Examples

Used with no parameters, like this:

sp_auditsproc

sp_auditsproc displays the auditing status of all stored procedures and
triggers in the current database.

Used with the name of a stored procedure or trigger and no other
parameters, like this:

sp_auditsproc new_sproc

sp_auditsproc displays the audit status for new_sproc.

Used with the default parameter and no others, like this:

sp_auditsproc default

sp_auditsproc displays the default audit settings for stored procedures
and triggers in the current database.

This command:

sp_auditsproc "all", pubs2, "fail"

establishes auditing of failed executions of all stored procedures and
triggers in the pubs2 database.

This command:

sp_auditsproc "default", pubs2, "ok"

sets a default in the pubs2 database so that successful executions of
new stored procedures and triggers will be audited.

System Administration Guide 16-15

SYBASE SQL Server Release 10.0 Establishing Auditing

Adding User-Specified Records to the Audit Trail

sp_addauditrecord allows users to enter user-defined audit records
(comments) into the audit trail. The syntax is:

sp_addauditrecord [@text=" message text "]
[, @db_name=" db_name"] [, @obj_name=" object name "]
[, @owner_name=" object owner "]
[, @dbid= database ID] [, @objid= object ID]

All of the parameters are optional.

• @text – is the text of the message that you wish to add to sysaudits.
The text is inserted into the extrainfo field of sysaudits.

• @db_name – is the name of the database referred to in the record.
This is inserted into the dbname field of sysaudits.

• @obj_name – is the name of the object referred to in the record. This
is inserted into the objname field of sysaudits.

• @owner_name – is the owner of the object referred to in the record.
This is inserted into the objowner field of sysaudits.

• @dbid – is the database ID number of db_name. This is an integer
value, and must not be placed in quotes. @dbid is inserted into the
dbid field of sysaudits.

• @objid – is the object ID number of obj_name. This is an integer
value, and must not be placed in quotes. @objid is inserted into the
objid field of sysaudits.

You can use sp_addauditrecord if:

• You have execute permission on sp_addauditrecord. (No special role
is required.)

• Auditing is enabled (sp_auditoption “enable auditing” is set to on).

• The adhoc records option of sp_auditoption is set to on.

sp_addauditrecord does not check the correctness of the information
you enter. For example, it does not check to see if the database ID you
have entered is correct for the database name that you specify.

When the audit system is installed, only a System Security Officer
and the Database Owner of sybsecurity can use sp_addauditrecord.
Permission to execute it may be granted to other users.

Examples

The following example adds a record to sysaudits. The message
portion is entered into the extrainfo field of sysaudits, “corporate” into

16-16 Auditing

The Audit Trail: sysaudits SYBASE SQL Server Release 10.0

the dbname field, “payroll” into the objname field, “dbo” into the
objowner field, “10” into the dbid field, and “1004738270” into the objid
field:

sp_addauditrecord @text="I gave A. Smith
permission to view the payroll table in the
corporate database. This permission was in effect
from 3:10 to 3:30 pm on 9/22/92.",
@db_name="corporate", @obj_name="payroll",
@owner_name="dbo", @dbid=10, @objid=1004738270

The following example inserts information only into the extrainfo and
dbname fields of sysaudits:

sp_addauditrecord @text="I am disabling auditing
briefly while we reconfigure the system",
@db_name="corporate"

The Audit Trail: sysaudits

sysaudits is a special system table that exists only in the sybsecurity
database and contains the audit trail. The only operations allowed on
it are select and truncate commands, and these may be executed only
by a System Security Officer.

Following are the columns of sysaudits:

• event: This contains a number corresponding to the event that is
being audited. Table 16-5 describes the events and the contents of
the extrainfo column that correspond to each event.

event
No. Description Contents of extrainfo Column

1 Enable auditing NULL
2 Disable auditing NULL
3 Login Host name
4 Logout Host name
5 Server boot Names of the server program,

master device, interfaces file path,
server, and error log file

6 RPC connection Remote server name, host name
7 Use of set command to turn roles

on and off
Role, new setting

8 Command requiring sa_role role Command type
9 Command requiring sso_role role Command type

10 Command requiring oper_role role Command type
12 Command requiring navigator role Command type

Table 16-5: Contents and Description of event and extrainfo Columns

System Administration Guide 16-17

SYBASE SQL Server Release 10.0 The Audit Trail: sysaudits

• eventmod (modifier): This supplements the event field by further
categorizing the type of event being audited. For example, this
field will contain a different value for a successful login than for a
failed login attempt.

Possible values for the eventmod field are:

• spid (server process ID): The ID number of the server process that
caused the audit record to be written.

• eventtime: The date and time that the audited event occurred.

• sequence: The sequence number of the record within a single event
(some events generate more than one audit record).

• suid: The server user ID of the user who performed the audited
function.

13 Error Error number, severity, and state
14 Ad hoc audit record User-supplied comment text
15 Command requiring replication

role
Command type

100 Database reference Command type
101 Table reference Command type
102 View reference Command type
103 Stored procedure execution Parameter list
104 Trigger execution NULL
105 User’s attempts to access a table Command type
106 User’s attempt to access a view Command type
107 User’s command text auditing Command batch text

Value in
eventmod Field Description

0 No eventmod for this audited event.

1 Successful occurrence of this audited event.
For error auditing (event code 12), a nonfatal error.

2 Failed occurrence of this audited event.
For error auditing (event code 12), a fatal error.

Table 16-6: Values for the eventmod Field in sysaudits

event
No. Description Contents of extrainfo Column

Table 16-5: Contents and Description of event and extrainfo Columns (continued)

16-18 Auditing

The Audit Trail: sysaudits SYBASE SQL Server Release 10.0

• dbid: Depending on the type of event being audited, this is the ID
of the database in which:

- The object, stored procedure, or trigger resides, or

- The audited event occurred.

• objid: The ID of the object accessed by the audited event. When a
stored procedure or trigger is being audited, this field contains
the ID of the relevant stored procedure or trigger.

• xactid: The transaction ID of the transaction containing the
audited event. This can be useful for associating the audit record
to a specific transaction in the transaction log. For a multi-
database transaction, this field contains the transaction ID from
the database where the transaction originated.

• loginname: The login name of the user who performed the audited
function.

• dbname: The name of the database corresponding to dbid.

• objname: The name of the object corresponding to objid.

• objowner: The name of the owner of the object accessed by the
audited event.

• extrainfo: Additional information regarding the audited event.
See Table 16-5 on page 16-16 for a description of the contents of
extrainfo for each event.

Reading the Audit Trail

The sysaudits table can be accessed only by a System Security Officer,
who can read the audit record by executing SQL commands on it.
The only commands that are allowed on sysaudits are select and
truncate.

For example, this command requests audit records for tasks
performed by “bob” on July 5, 1993:

select * from sysaudits
where loginname = "bob"
and eventtime like "Jul 5% 93"

This command requests audit records for commands performed on
or in the pubs2 database by users with the System Security Officer
role (that kind of role auditing is event type 9, as shown in Table 16-5
on page 16-16):

System Administration Guide 16-19

SYBASE SQL Server Release 10.0 Archiving Audit Data

select * from sysaudits
where event = 9
and dbname = "pubs2"

Archiving Audit Data

Because the sysaudits table is added to continuously, it is necessary to
archive old audit data from time to time, depending on the size of the
device on which sysaudits resides. If the audit device fills up, audited
system activity will come to a halt.

To archive audit data, you have two choices:

• Use the select into command to create a new table and copy data
into it.

• Use the insert and select commands to copy data from sysaudits into
a pre-existing table.

The archive table should be in a separate database on a separate
device from the sybsecurity database. It is preferable that this
database be a special archive database, where you can preserve the
audit records for as long as you need to.

The archive procedures are described in the following sections.

Using select into

The select into command creates a new table based on the table from
which you are selecting. Before you can use select into, you must turn
on the select into/bulkcopy database option in the archive database (with
sp_dboption). Use the following procedure to copy sysaudits:

1. Create the archive database on a separate device from the one
containing sysaudits.

2. In that database, use sp_dboption to turn on the select into/bulk copy
option.

3. Copy the contents of sysaudits into this database with a
command like this:

select * into auditarchive7_5
from sybsecurity.dbo.sysaudits

You can further qualify the rows to be selected from sysaudits if
you wish to.

4. Delete all rows from sysaudits with this command:

16-20 Auditing

Archiving Audit Data SYBASE SQL Server Release 10.0

truncate table sysaudits

While the select into/bulkcopy option is on, you are not allowed to dump
the transaction log, because these operations are not logged and
changes are therefore not recoverable from transaction logs. In this
situation, issuing the dump transaction statement produces an error
message instructing you to use dump database instead.

Be certain that you dump your database before you turn off the select
into/bulkcopy flag.

See select in Volume 1 of the SQL Server Reference Manual for more
information.

Using insert and select to Copy Into an Archive Table

You can use this method to copy the audit data into an existing table
having the same columns as sysaudits.

The procedure is:

1. Create the archive database on a separate device from the one
containing sysaudits.

2. Create an archive table with columns identical to those in
sysaudits. If such a table does not already exist, you can use select
into to create an empty one by having a false condition in the
where clause. For example:

select *
into auditarchive7_5
from sybsecurity.dbo.sysaudits
where 1 = 2

The where condition is always false, so an empty table is created
that is duplicate of sysaudits.

The select into/bulk copy database option must be turned on in the
archive database (using sp_dboption) before you can use select into.

3. Insert all rows from sysaudits into the archive table, like this:

insert auditarchive7_5
select * from sybsecurity.dbo.sysaudits

4. Delete all rows from sysaudits with this command:

truncate table sysaudits

System Administration Guide 16-21

SYBASE SQL Server Release 10.0 Recovering if sysaudits Fills Up

Using a Threshold Action Procedure

sysaudits is automatically installed on its own segment on the audit
device. Therefore, you can use the sp_addthreshold system procedure to
specify a user-supplied “threshold action” procedure to be executed
when the free space left on the sysaudits segment goes below a
specified threshold. (Threshold management is discussed in Chapter
10, ‘‘Managing Free Space with Thresholds’’.)

The “threshold action” stored procedure should perform at least
these two tasks:

1. Execute a select or insert with select statement from sysaudits to an
archive table, preferably in a separate archive database.

2. Truncate the sysaudits table with the truncate table command.

You can then manage the archived audit data with dump and load
commands as desired.

Recovering if sysaudits Fills Up

If you do not regularly archive your audit data, the sysaudits table
may run out of space. This, in turn, causes the audit device to become
full. This is what happens next:

1. The audit process attempts to insert the next audit record into
sysaudits. This fails, so the audit process dies. An error message
goes to the error log.

2. As each user attempts to perform an auditable event (an event
on which auditing has been enabled), the event cannot be
completed because no auditing occurs. Each such user process
dies. Users who do not attempt to perform an auditable event
are unaffected.

3. If you have global login auditing enabled (with sp_auditoption
“logins”), no one can log into the server, including a System
Security Officer.

4. If you are auditing commands requiring System Security Officer
privileges (with sp_auditoption “sso_role”, “on”), a System Security
Officer will be unable to execute any SSO-specific commands,
such as to turn auditing off.

16-22 Auditing

Recovering if sysaudits Fills Up SYBASE SQL Server Release 10.0

The procedure for recovering from this is as follows:

If the sysaudits device becomes full or the audit process terminates
abnormally for any reason, the System Security Officer will
immediately gain these special privileges:

• The System Security Officer becomes exempt from auditing.
Every auditable event performed by a System Security Officer
after this point will cause a warning message to be sent to the
error log file. The message will state the date and time and a
warning that an audit has been missed, as well as the user’s
server user ID, login name, event code, and any information that
would go into the extrainfo field.

• The System Security Officer can execute the shutdown command to
shut down the server after sysaudits has been archived and
truncated. Normally, only the System Administrator can execute
shutdown.

If sysaudits is full, the System Security Officer can now archive and
truncate sysaudits as described in ‘‘Archiving Audit Data’’ on page
16-19. He or she can then execute shutdown to stop the server. A
System Administrator can then restart the server, which will
reestablish auditing.

If the audit process fails for a reason other than sysaudits becoming
full, please call Sybase Technical Support.

System Administration Guide 17-1

17. Language, Sort Order, and
Character Set Issues

Introduction

SQL Server supports international installations with a series of
language modules that provide a variety of languages, sort orders
and character sets for use by SQL Server. This chapter describes the
language modules briefly, and summarizes the steps needed to
change SQL Server’s language, sort order, or character set.

International Language Modules

The international features of the SQL Server are supported by files
that contain translated error messages, character set and sort order
definitions, and utilities for converting SQL Server’s character set
into the appropriate character set for a particular terminal. These
files, located in the charsets and locales directories in the SYBASE
directory structure, are called localization files. and they are
included when any language module is installed with your SQL
Server. A U.S. English-only installation that does not receive these
language modules does have some localization files, which are
discussed in this chapter.

Types of Localization Files

Several different kinds of localization files are supplied with SQL
Server.

File Location Purpose/Contents

productname.loc In the character set
subdirectories, under
each language
directory in the locales
directory

Error messages translated into the
local language. If an entry is not
translated, that error message or
string appears in U.S. English
instead of the local language.

common.loc In each language and
character set directory
of the locales directory

Contains the local names of the
months of the year and their
abbreviations, and information on
the local date, time, and money
formatting.

Table 17-1: Localization Files

17

17-2 Language, Sort Order, and Character Set Issues

International Language Modules SYBASE SQL Server Release 10.0

◆ WARNING!
Do not alter any of the localization files.If you need to install a new
terminal definition or sort order, or if you want to alter an error message,
contact your local SQL Server distributor.

The next section describes the directory structure of a language
module.

 Language Module Directory Structure

Figure 17-1: Language Module Directory Structure shows how language
module files are arranged under the charsets and locales
directories.This example shows character sets that are included in a
Western European language module. Language modules for
different regions may include different character sets and different
types of .srt files. Supported languages and character sets in any of
the language modules you receive are listed by the installation
program when you are asked to select the languages and character
sets you wish to install on your SQL Server. The sort orders usually
available are described in the SQL Server Installation Guide and the
System Administration Guide Supplement.

charset.loc In each character set
subdirectory of the
charsets directory

Character set definition files

*.srt In each character set
subdirectory of the
charsets directory

Defines the sort order for alpha-
numeric and special characters,
including ligatures, diacritics, and
other language-specific
considerations.

*.xlt Subdirectories under
charsets

Terminal-specific character
translations files for use with
utilities such as bcp and isql.These
files are part of the language
module for Open Client. For more
information about how the .xlt files
are used, see the SQL Server Utility
Programs or Chapter 18,
‘‘Converting Character Sets
Between SQL Server and Client’’.

File Location Purpose/Contents

Table 17-1: Localization Files (continued)

System Administration Guide 17-3

SYBASE SQL Server Release 10.0 Changing Sort Orders, Languages, and Character Sets

Figure 17-1: Language Module Directory Structure

Changing Sort Orders, Languages, and Character Sets

A System Administrator can change the sort order, language, or
character set used by SQL Server. Because a sort order is built on a
specific character set, changing character sets always involves a
change in sort order. However, you can change sort orders without
changing character sets, because there may be more than one sort
order available for a character set. This section summarizes the steps
to take when changing SQL Server’s sort order, language, or
character set using sybinit. See the System Administration Guide
Supplement for your platform for more information on using this
option.

Language Modules

charset.loc

*.srt

*.xlt

iso_1cp850 cp437 mac roman8

charset.loc

*.srt

*.xlt

charset.loc

*.srt

*.xlt

charset.loc

*.srt

*.xlt

charset.loc

*.srt

*.xlt

iso_1cp850 cp437 mac roman8

locales

charsets

language1 language2

product.loc

sybinit
 - product.loc

product.loc

sybinit
 - product.loc

product.loc

sybinit
 - product.loc

product.loc

sybinit
 - product.loc

product.loc

sybinit
 - product.loc

17-4 Language, Sort Order, and Character Set Issues

Changing Sort Orders, Languages, and Character Sets SYBASE SQL Server Release 10.0

About Changing Character Sets

The “Configure an existing SQL Server” option of sybinit is primarily
intended to change character sets for those installations that are
currently storing only 7-bit ASCII character data in their SQL Server
databases. (Non-7-bit ASCII data includes 8-bit character data or
multibyte data.) If you have non-7-bit ASCII data in your databases
and you wish to change your character set, contact Sybase Technical
Support.

◆ WARNING!
It is safe to change your SQL Server’s character set using sybinit only if all
of your current character data is 7-bit ASCII.When you change character
sets, existing character data is not converted to the new character set. As
a result, changing character sets when you have non-7-bit ASCII data:
• May create partial or illegal characters
• Changes the appearance of character data because different

character sets encode characters in different ways

About Changing Sort Orders

When you consider changing the sort order for character data on a
particular SQL Server, keep this in mind: all your organization’s SQL
Servers should have the same sort order. A single sort order enforces
consistency and distributed processing is easier to administer. If
different SQL Servers support different non-binary sort orders, you
cannot load a database dump from one to another. You can, however,
load a database dump from one SQL Server to another SQL Server
with a different character set if both servers use binary sort order.
However, the character data that is loaded is interpreted as though it
is in the new server’s character set. No character set conversion is
done.

SQL Server’s sort order and character set are first determined when
the server is installed, before you load any user data or database
objects into it.

The Steps Involved

There are several steps involved in changing sort orders, languages,
or character sets.

System Administration Guide 17-5

SYBASE SQL Server Release 10.0 Changing Sort Orders, Languages, and Character Sets

Preliminary Steps

1. Dump all user databases and master. If you have made changes
to model or sybsystemprocs, dump it also.

2. Use sybload to load the language module if it is not already
loaded (see the SQL Server Installation Guide for your platform
for complete directions).

3. Move to the install directory of your SQL Server installation and
invoke sybinit.

4. At the first prompt, select:

3. Configure a Server product

5. Then, choose:

1. SQL Server

6. And:

2. Configure an existing SQL Server

7. Choose the number of the SQL Server from the list of server
names.

8. Complete the password screen.

At this point, you can choose to configure languages, character sets,
or sort order, as well as other options. As you complete each of these
steps, you’ll return to the same screen. You can complete each of
these in turn without repeating the steps above, if you choose.

The sybinit program does not begin making changes until you type
Control-A from this screen, and then respond “y” to the question
“Execute the SQL Server Configuration now?”, so typing the
incorrect response to any of the prompts or menus does not start the
installation.

Steps to Configure Languages

To configure languages, choose:

6. CONFIGURE LANGUAGES

The next screen lists the language modules available in your SYBASE
directory. You can choose to:

• Remove an existing language from the SQL Server

• Install a language on the server

• Make a language the default on the server

17-6 Language, Sort Order, and Character Set Issues

Changing Sort Orders, Languages, and Character Sets SYBASE SQL Server Release 10.0

Choose the number of a language from the menu, and reply to each
prompt.

Steps to Configure Character Sets

To configure character sets, choose:

7. CONFIGURE CHARACTER SETS

The next screen lists the character sets available on your system.

You can choose to:

• Remove an already-installed character set

• Install additional character sets

• Make a character set the default for the Server

Steps to Configure a Sort Order

To configure a sort order, choose:

8. CONFIGURE SORT ORDER

Choose the sort order you wish to install from the menu.

Installing the Changes

Once you have chosen the languages, character sets, and/or sort
order for your server, type Control-A to accept the changes. At the
prompt:

Execute the SQL Server Configuration now?

type “y”.

The installation program then boots SQL Server if it is not already
running, installs the new values, installs system messages in any
language added, and stops and starts SQL Server again to
reconfigure. As sybinit completes each configuration step, it prints
status messages. When the process is finished, this message appears:

SQL Server successfully reconfigured.

The recovery process following reconfiguration is described in the
next section.

Setting Users’ Default Languages

If an additional language is installed, users can run sp_modifylogin to
set that language as their default language rather than SQL Server’s
default language. Installing additional character sets allows clients

System Administration Guide 17-7

SYBASE SQL Server Release 10.0 Changing Sort Orders, Languages, and Character Sets

on platforms that use those character sets to communicate with this
SQL Server using character set conversion. See Chapter 18,
‘‘Converting Character Sets Between SQL Server and Client’’ for
more information on character set conversion.

Database Dumps and Configuration Changes

➤ Note
Back up all databases on your server before and after you change sort orders

or character sets.

If the old sort order and the new sort order are not the same, you are
not allowed to load a database from a dump performed before the
sort order was reconfigured. If you attempt to do so, an error
message appears and the load is aborted. If the character set was
reconfigured, and either the old or the new sort order is not binary,
you are not allowed to load a database dump made before the
character set was reconfigured. However, if both the old and new
character sets use binary sort order, you can restore your databases
from backups made before the character set was reconfigured.

◆ WARNING!
Do not load a database dump made prior to changing character sets if
you have 8-bit character data in that dump. SQL Server interprets all data
loaded from a database dump as if it is in the new character set.

If you installed additional languages but did not change SQL
Server’s sort order or character set, you have completed the
reconfiguration process. If you changed SQL Server’s default sort
order or character set, go on to the next section.

If You Changed the Sort Order or Default Character Set

This section describes recovery after reconfiguration and the steps
you may need to follow if you changed SQL Server’s sort order or
default character set.

If you changed sort orders, you need to do the following after
reconfiguring SQL Server:

• Run sp_indsuspect to find user indexes that may no longer be valid.

• Rebuild suspect user indexes using the dbcc reindex command.

17-8 Language, Sort Order, and Character Set Issues

Changing Sort Orders, Languages, and Character Sets SYBASE SQL Server Release 10.0

For more information, see ‘‘Using sp_indsuspect to Find Corrupt
Indexes’’ on page 17-8, and‘‘Rebuilding Indexes with dbcc reindex’’
on page 17-9.

If you changed to a multibyte character set from any other character
set, you must upgrade any existing text values with dbcc fix_text (when
moving to a multibyte character set from either).

See ‘‘Upgrading text Data with dbcc fix_text’’ on page 17-10 for more
information.

Recovery after Reconfiguration

Every time SQL Server is stopped and restarted, recovery is
performed automatically on each database. Automatic recovery is
covered in detail in Chapter 7, ‘‘Developing a Backup and Recovery
Plan’’.

After recovery is complete, the new sort order and character set
definitions are loaded.

If the sort order has been changed, SQL Server switches to single user
mode to allow the necessary updates to system tables and to prevent
other users from using the server. Each system table with a character-
based index is automatically checked to see if any indexes have been
corrupted by the sort order change. Character-based indexes in
system tables are automatically rebuilt, if necessary, using the new
sort order definition.

After system indexes are rebuilt, character-based user indexes are
marked as “suspect” in the sysindexes system table without being
checked. User tables with suspect indexes are marked as “read only”
in sysobjects in order to prevent updates to these tables or use of the
suspect indexes until the indexes have been checked and rebuilt if
necessary.

Next, the new sort order information replaces the old information in
the area of the disk that holds configuration information. SQL Server
then shuts down to allow it to start with a clean slate for the next
session.

Using sp_indsuspect to Find Corrupt Indexes

After SQL Server shuts down, restart it and use sp_indsuspect to find
the user tables that need to be reindexed. The syntax is:

sp_indsuspect [table_name]

table_name is the optional name of a specific table. If table_name is
missing, then sp_indsuspect creates a list of all tables in the current

System Administration Guide 17-9

SYBASE SQL Server Release 10.0 Changing Sort Orders, Languages, and Character Sets

database that have indexes marked suspect when the sort order
changed. In this example, running sp_indsuspect in mydb database
yields one suspect index:

sp_indsuspect

Suspect indexes in database mydb
Own.Tab.Ind (Obj_ID, Ind_ID) =
dbo.holdings.h_name_ix(160048003, 2)

Rebuilding Indexes with dbcc reindex

dbcc reindex allows the System Administrator or table owner to check
the integrity of indexes attached to a user table and to rebuild suspect
indexes. dbcc reindex checks each index by running a “fast” version of
dbcc checktable. The function prints a message when it discovers the
first index-related error, then rebuilds the inconsistent indexes.

The syntax is:

dbcc reindex(table_name | table_id)

Run this utility on all tables listed as containing suspect indexes by
sp_indsuspect. Here’s an example:

dbcc reindex(titles)

One or more indexes are corrupt. They will be
rebuilt.

In the above example, dbcc reindex has discovered one or more suspect
indexes in the table titles. The dbcc utility drops and recreates the
appropriate indexes.

If the indexes for a table are already correct, or if there are no indexes
for the table, dbcc reindex does not rebuild any indexes. It prints an
informational message instead. The command is also aborted if a
table is suspected of containing corrupt data. If that happens, an
error message appears instructing the user to run dbcc checktable.

When dbcc reindex finishes successfully, all “suspect” marks on the
table’s indexes are removed. The “read only” mark on the table is
removed as well, and the table can be updated. These marks are
removed whether or not any indexes have to be rebuilt.

dbcc reindex does not perform reindexing of system tables. System
indexes are checked and rebuilt, if necessary, as an automatic part of
recovery after SQL Server is restarted following a sort order change.

17-10 Language, Sort Order, and Character Set Issues

Changing Sort Orders, Languages, and Character Sets SYBASE SQL Server Release 10.0

Upgrading text Data with dbcc fix_text

➤ Note
You must run dbcc fix_text if you are changing to a new multibyte character set

from either a single-byte or a multibyte character set. You need to run dbcc
fix_text only on tables that contain text data.

Changing to a multibyte character set makes the internal
management of text data more complicated. Since a text value can be
large enough to cover several pages, SQL Server must be able to
handle characters that may span across page boundaries. To do so,
the server requires additional information on each of the text pages.

To see the names of all tables that contain text data, use this query:

select sysobjects.name
from sysobjects, syscolumns
where syscolumns.type = 35
and sysobjects.id = syscolumns.id

The System Administrator or table owner must run dbcc fix_text to
calculate the new values needed.

The syntax of dbcc fix_text is:

dbcc fix_text (table_name | table_id)

The table named must be in the current database. dbcc fix_text opens
the specified table and for each text value, calculates the character
statistics required and adds them to the appropriate page header
fields. This process can take a long time, depending on the number
and size of text values in a table. dbcc fix_text can generate a large
number of log records, and may fill up the transaction log. dbcc fix_text
performs update in a series of small transactions, so if a log becomes
full, only a small amount of work is lost. If you run out of log space,
clear out your log (see Chapter 8, ‘‘Backing Up and Restoring User
Databases’’, for details), and restart dbcc fix_text using the same table
that was being upgraded when the original dbcc fix_text halted. Since
each multibyte text value contains information that indicates
whether or not it has been upgraded, dbcc fix_text only upgrades the
text values that were not processed in earlier passes.

If your database stores its log on a separate segment, you can use
thresholds to manage clearing the log. See Chapter 10, ‘‘Managing
Free Space with Thresholds’’.

If dbcc fix_text does not complete updating a table, the utility generates
an error message, such as:

System Administration Guide 17-11

SYBASE SQL Server Release 10.0 Installing Date Strings for Unsupported Languages

Not all of the TEXT pages in tablename have been
successfully updated, however, dbcc fix_text is
restartable. Please issue the command again once
any other errors have been addressed.

If the utility is unable to acquire a needed lock on a text page, it
reports the problem and continues with the work, like this:

Unable to acquire an exclusive lock on text page
408. This text value has not been recalculated.
In order to recalculate those TEXT pages you must
release the lock and reissue the dbcc fix_text
command.

Retrieving text Values After Changing Character Sets

If you attempt to retrieve text values after changing to a multibyte
character set and have not run dbcc fix_text, the command fails and an
error message is generated instructing you to run dbcc fix_text on the
table:

SQL Server is now running a multi-byte character
set,and this TEXT column’s character counts have
not been recalculated using this character set.
Use dbcc fix_text before running this query again.

Installing Date Strings for Unsupported Languages

You can use sp_addlanguage to install names for the days of the week
and months of the year for languages that do not have language
modules. With sp_addlanguage you define:

• A language name, and optionally, an alias for the name

• A list of the full names of months, and a list of 3-letter
abbreviations for the month names

• A list of the full names of the days of the week

• The date format for entering dates (such as month/day/year)

• The number of the first day of the week

This example adds the information for Spanish:

sp_addlanguage spanish, espanol,
"enero,febrero,marzo,abril,mayo,junio,julio,agusto,septiembre,oct
ubre,noviembre,diciembre",
"ene,feb,mar,abr,mayo,jun,jul,agu,sep,oct,nov,dic",
"lunes,martes,miercoles,jueves,viernes,sabado,domingo",
dmy, 1

17-12 Language, Sort Order, and Character Set Issues

Installing Date Strings for Unsupported Languages SYBASE SQL Server Release 10.0

sp_addlanguage enforces strict data entry rules. The lists of month
names, month abbreviations and days of the week must be comma-
separated lists with no spaces or line feeds (returns), and they must
contain exactly the right number of elements (12 for the month
strings, 7 for the day-of-the-week strings.)

Valid values for the date formats are: mdy, dmy, ymd, ydm, myd, or
dym. “dmy” indicates that dates are in day/month/year order. This
format affects only data entry; to change output format, you must
use the convert function.

Server versus Client Side Date Interpretation

When a user selects date values, SQL Server sends them to the client
in internal format, and the client converts them for display, using the
common.loc file and other localization files in the corresponding
language subdirectory of the locales directory. When a user’s default
language is set to a language that has been added with sp_addlanguage,
the client tries to find the correct common.loc file for that language. If
the client fails to find the correct file, it usually prints an error
message, and still connects to the server. If a client connects without
having found the right localization files, and then the user selects
date values, the dates are displayed using the date strings for the
server’s default language. You can use the convert function to force
the dates to be converted to character data at the server.

For example, if a user whose default language is “spanish” logged in
from a client that couldn’t find Spanish localization files, this query
would display the dates in SQL Server’s default language:

select pubdate from titles

The following query returns the date using the Spanish month
names:

select convert(char(19),pubdate) from titles

System Administration Guide 18-1

18. Converting Character Sets Between
SQL Server and Client

Introduction

Clients that use different character encoding schemes can connect over
a network to SQL Server. In a Western European setting, for example,
a server that runs in an ISO 8859-1 (iso_1) environment may be
connected to a client that runs in a Roman 8 (roman8) environment.
In Japan, a server that runs in an EUC JIS (eucjis) environment may
be connected to a client that runs in a Shift-JIS (sjis) environment.
This chapter describes the character set conversion features of SQL
Server and of the utilities isql, bcp, and defncopy.

Conversion Paths Supported

SQL Server supports conversion among a variety of character sets, as
shown in Table 18-1: Character Set Conversions. Conversion among the
European character sets ISO 8859-1 (iso_1), Code Page 850 (cp850),
Code Page 437 (cp437), Roman 8 (roman8), and Macintosh (mac) is
supported. Conversion among the Japanese character sets EUC JIS
(eucjis), Shift-JIS (sjis), and DEC Kanji (deckanji) is also supported.

An additional character set, ascii_7, is compatible with all character
sets. If either the SQL Server or client’s character set is ascii_7, any 7-
bit ASCII character is allowed to pass between client and server
unaltered. Other characters produce conversion errors.

18

18-2 Converting Character Sets Between SQL Server and Client

Conversion Paths Supported SYBASE SQL Server Release 10.0

Client’s Character Set

as
ci

i_
8

as
ci

i_
7

is
o_

1

cp
85

0

cp
43

7

ro
m

an
8

m
ac

eu
cj

is

sj
is

de
ck

an
ji

SQ
L

Se
rv

er
’s

 C
ha

ra
ct

er
 S

et

ascii_8 n/a 7-bit
okay

ascii_7 7-bit
okay n/a 7-bit

okay
7-bit
okay

7-bit
okay

7-bit
okay

7-bit
okay

7-bit
okay

7-bit
okay

7-bit
okay

iso_1 7-bit
okay n/a

cp850 7-bit
okay n/a

cp437 7-bit
okay n/a

roman8 7-bit
okay n/a

mac 7-bit
okay n/a

eucjis 7-bit
okay n/a

sjis 7-bit
okay n/a

deckanji 7-bit
okay n/a

No conversions required because SQL Server and client are using the same
character set.

This conversion is supported. Certain types of characters cannot be
converted.

Conversion is not supported between these two character sets.

7-bit
okay

Only 7-bit ASCII characters are passed through; others cause a conversion
error. The language for the session is also forced to us_english.

Table 18-1: Character Set Conversions

System Administration Guide 18-3

SYBASE SQL Server Release 10.0 Conversion Paths Supported

Characters that Cannot Be Converted

In converting any character set to another, there are some characters
that cannot be converted. Here are two possibilities:

• The character exists (is encoded) in the source character set, but it
does not exist in the target character set. For example, the
character “Œ,” the OE ligature, is part of the Macintosh character
set (codepoint 0xCE). This character does not exist in the ISO
8859-1 character set. If “Œ” exists in data being converted from
the Macintosh to the ISO 8859-1 character set, it causes a
conversion error.

• The character exists in both the source and the target character
set, but in the target character set the character is represented by
a different number of bytes than in the source character set.
Figure 18-1 compares the EUC JIS and Shift-JIS encodings for the
same sequence of characters in a Japanese environment. Kanji,
Hiragana, Hankaku Romaji, Zenkaku Romaji, and Zenkaku
Katakana characters are represented by the same number of bytes
in both character sets and can be converted between EUC JIS and
Shift-JIS. However, Hankaku Katakana characters (the last set of
characters in the example) are represented by two bytes in EUC
JIS and by a single byte in Shift-JIS: these characters cannot be
converted.

Figure 18-1: Comparison of EUC JIS and Shift-JIS Encoding for Japanese Characters

In addition to Hankaku Katakana, user-defined characters (Gaiji)
cannot be converted between Japanese character sets.

kanji
hiragana
hankaku romaji
zenkaku romaji
zenkaku katakana
hankaku katakana

c6fc CPT b8ec 53 59 42 41 53 45 20
a3d3 a3d1 a3cc

8ec3 8ede 8eb0 8ec0 8ecd 8ede 8eb0 8ebd
a5b5 a1bc a5d9 a4ce

EUC JIS form-of-use Shift-JIS form-of-use
 93fa 967b 8cea 53 59 42 41 53 45 20
 8272 8270 826b
 8354 815b 8378 82cc
 c3 de b0 c0 cd de b0 bd

conversion

Sc
rip

ts

Nu
m

er
ic

Re
pr

es
en

ta
tio

n

18-4 Converting Character Sets Between SQL Server and Client

Error Handling in Character Set Conversion SYBASE SQL Server Release 10.0

Error Handling in Character Set Conversion

SQL Server’s character set conversion filters report conversion errors
when a character exists in the client’s character set but not in the
server’s, or vice versa. SQL Server must guarantee that data
successfully converted on input to the server can be successfully
converted back to the client’s character set when the client retrieves
that data. To do this effectively, SQL Server must avoid putting
suspect data into the database.

On encountering a conversion error in data being entered, SQL
Server generates this error message:

Msg 2402, Severity 16 (EX_USER):
Error converting client characters into server’s
character set. Some character(s) could not be
converted.

A conversion error prevents query execution.

When SQL Server encounters a conversion error while sending data
to the client, the bytes of the suspect characters are replaced by ASCII
question marks (“?”). However, the query batch continues to
completion. When the statement is complete, SQL Server sends the
following message:

Msg 2403, Severity 16 (EX_INFO):
WARNING! Some character(s) could not be converted
into client’s character set. Unconverted bytes
were changed to question marks (‘?’).

See ‘‘Controlling Character Conversion During a Session’’ on page
18-6 to learn how to turn off error reporting for data being sent from
server to client.

Setting up the Conversion Process

Character set conversion begins at login or when the client requests
conversion with the set char_convert command during a work session.
If the client is using a 4.6 or later release of Open Client DB-Library,
and the client and SQL Server are using different character sets,
conversion is turned on during the login process and set to a default
based on the character set that the client is using. Character set
conversion can be controlled in the standalone utilities isql, bcp, and
defncopy with a command line option. See ‘‘Display and File
Character Set Command Line Options’’ on page 18-7 for details.

System Administration Guide 18-5

SYBASE SQL Server Release 10.0 Setting up the Conversion Process

When a client requests a connection, SQL Server checks whether it
can convert from the client’s character set to its own character set. If
it can, it sets up the appropriate character set conversion filters so
that any character data read from or sent to the client automatically
passes through them. Next, SQL Server checks the user name and
password. These have already been read and must be converted. If
they cannot be converted, the login is denied. If conversion on the
name and password succeeds, SQL Server looks up the converted
strings in syslogins.

If SQL Server cannot perform the requested conversions, it sends an
error message to the client. The initial message explains why
conversion cannot be done and is followed by this message:

Msg #2411, Severity 10 (EX_INFO):
No conversions will be done.

SQL Server next tries to find the user name and password in their
unconverted form in syslogins. If it cannot find them, the login is
denied. If it succeeds, the login is granted but no character set
conversion takes place.

➤ Note
Machine names, user names, and passwords in heterogeneous environments

should be composed entirely of 7-bit ASCII characters. If the client’s request for

character set conversion fails, the login still succeeds if SQL Server finds the

unconverted user name and password in syslogins.

If the request for conversion fails, or if the client’s character set is set to ascii_7,

the language for the session is forced to us_english. If the user had requested

a different language, an informational message appears, stating that the

language for the session is being forced to us_english.

Specifying the Character Set for Utility Programs

A command line option for the isql, bcp, and defncopy utilities specifies
the client’s character set.

Here are the choices:

• -J charset_name (UNIX and PC) or /clientcharset = charset_name
(OpenVMS) sets the client’s character set to the charset_name.

18-6 Converting Character Sets Between SQL Server and Client

Setting up the Conversion Process SYBASE SQL Server Release 10.0

• -J or /clientcharset with no character set name sets the client’s
character set to NULL. No conversion takes place. No message is
sent when this happens.

Omitting the client character set command line flag sets the character
set to a default for the platform. This default may not be the character
set that the client is using. See the SQL Server Utility Programs for
information on the default for your platform.

➤ Note
The -J flag is used differently on pre-4.9 SQL Servers running on OS/2.

Controlling Character Conversion During a Session

set char_convert allows the user to decide how character set conversion
operates during a particular work session. Use set char_convert to:

• Set character set conversion on or off

• Start conversion into a specific character set

• Turn error reporting on or off

The syntax for set char_convert is:

set char_convert {off |
 {on [with {error | no_error}]} |
 charset [with {error | no_error}]}

Depending on the arguments, the command:

• Turns character set conversion on and off between SQL Server
and a client, when used with off or on:

set char_convert on

set char_convert off turns conversion off so that characters are sent
and received unchanged. set char_convert on turns conversion back
on after it was turned off. If character set conversion was not
turned on during the login process or by the set char_convert charset
command, then set char_convert on generates an error message.

• Turns the printing of error messages when the with no_error option
is included. When a user chooses with no_error, SQL Server does not
notify the application when characters from SQL Server cannot
be converted to the client’s character set. Error reporting is
initially set to “on” when a client connects with SQL Server: if you
do not want error reporting, you must turn it off for each session.

System Administration Guide 18-7

SYBASE SQL Server Release 10.0 Display and File Character Set Command Line Options

To turn error reporting back on within a session, use the on with
error option.

Whether or not error reporting is turned on, the bytes which
cannot be converted are replaced with ASCII question marks
(“?”).

• Starts conversion between the server character set and a different
client character set, when used with a charset value. charset can be
either the character set’s id or name from syscharsets:

set char_convert "cp850"

If you request character set conversion with set char_convert charset
and SQL Server cannot perform the requested conversions, the
session reverts to the state of conversion in effect before the
request. For example, if character set conversion is off prior to
the set char_convert charset command, conversion remains off if the
request fails.

If the user is using a language other than us_english before entering
this command:

set char_convert "ascii_7"

the language for the session is forced to us_english and an
informational message appears. No message appears if the session is
already in us_english.

 Display and File Character Set Command Line Options

Although the focus of this chapter is on character set conversion
between client and SQL Server, character set conversion may be
needed in two other places:

• Between the client and a terminal, or

• Between the client and a file system. Figure 18-2: Where Character
Set Conversion May be Needed illustrates these different paths, as
well as the command line options available in the standalone
utilities isql, bcp, and defncopy.

As described earlier, the -J or /clientcharset command line option
specifies the character set that the client uses when sending and
receiving character data to and from the server.

18-8 Converting Character Sets Between SQL Server and Client

Display and File Character Set Command Line Options SYBASE SQL Server Release 10.0

Setting the Display Character Set

Use the -a command line option (/dispcharset on OpenVMS) if you are
running the client from a terminal with a character set that differs
from the client character set. In this case, the -a option and the -J
option are used together to identify the character set translation file
(.xlt file) needed for the conversion.

Use the -a command line option (/dispcharset on OpenVMS) without
-J (/clientcharset on OpenVMS) only if the client character set is the
same as the default character set.

Setting the File Character Set

Use the -q command line option (/filecharset on OpenVMS) if you are
running bcp to copy character data to or from a file system that uses a
character set different from the client character set. In this case, use
the -q or /filecharset option and the -J or /clientcharset option together to
identify the character set translation file (.xlt file) needed for the
conversion.

Figure 18-2: Where Character Set Conversion May be Needed

SQL Server

-J client_charset

-a display_charset

Terminal Display

-q datafile_charset
 (bcp only)

File System

Client

Appendixes

System Administration Guide A-1

A. Reserved Words

Keywords are words that have a special meaning. This appendix lists
Transact-SQL, APT-SQL, and SQL92 keywords.

Transact-SQL Reserved Words

The following words are reserved by SQL Server as keywords
(command verbs) and cannot be used for the names of database
objects such as databases, tables, rules, and defaults. Reserved words
can be used for the names of local variables and for stored procedure
parameter names.

add close disk from

all clustered distinct goto

alter commit double grant

and compute drop group

any confirm dummy having

arith_overflow constraint dump holdlock

as continue else identity

asc controlrow end identity_insert

at convert endtran if

authorization count errlvl in

avg create errorexit index

begin current escape insert

between cursor except intersect

break data_pgs exec into

browse database execute is

bulk dbcc exists isolation

by deallocate exit key

cascade declare fetch kill

char_convert default fillfactor level

check delete for like

Table A-1: Transact-SQL reserved words

A

A-2 Reserved Words

Transact-SQL Reserved Words SYBASE SQL Server Release 10.0

checkpoint desc foreign lineno

load perm rollback to

max permanent rowcnt tran

min plan rowcount transaction

mirror precision rows trigger

mirrorexit prepare rule truncate

national primary save tsequal

noholdlock print schema union

nonclustered privileges select unique

not proc set update

null procedure setuser used_pgs

numeric_truncation processexit shared user

of public shutdown user_option

off raiserror some using

offsets read statistics values

on readtext stripe varying

once reconfigure sum view

only references syb_identity waitfor

open replace syb_restree where

option reserved_pgs table while

or return temp with

order revoke temporary work

over role textsize writetext

Table A-1: Transact-SQL reserved words (continued)

System Administration Guide A-3

SYBASE SQL Server Release 10.0 APT-SQL Keywords

APT-SQL Keywords

Table A-2: APT-SQL keywords lists the APT-SQL keywords which are
not reserved words in Transact-SQL. If you are planning to use APT-
SQL, avoid using these words as identifiers.

$channel charindex int smallint

$curfield closesql interruptsql sqlbegin

$curform connect list sqlend

$curgroup curindex local sqlexpr

$curpick cursqlindex log sqlrow

$date datalength lower submit

$index datename mchoice substring

$status datepart menu switch

abort datetime menubar switchend

and define money system

append disconnect nextquery tab

apt enter nomsg text

backtab entry opensql textport

bell exitform parentname tinyint

binary exp perform trace

bit false positionform transfer

call fetchsql post trim

callextern field printform true

callform float rchoice upper

callreport foreach remote useform

cancelform form reset variable

case global schoice

channel hidden scroll

char image shared

Table A-2: APT-SQL keywords

A-4 Reserved Words

SQL92 Keywords SYBASE SQL Server Release 10.0

SQL92 Keywords

SQL Server 10.0 includes entry-level SQL92 features. Full SQL92
implementation includes the words listed in the following tables as
command syntax. Since upgrading identifiers can be a complex
process, we are providing this list for your convenience. The
publication of this information does not commit Sybase to providing
all of these SQL92 features in subsequent releases, and in addition
subsequent releases may include keywords not included in this list.

Table A-3 lists the SQL92 keywords which are not reserved words in
Transact-SQL.

absolute constraints false

action corresponding first

allocate cross float

are current_date found

assertion current_time full

bit current_timestamp get

bit_length current_user global

both date go

cascaded day hour

case dec immediate

cast decimal indicator

catalog deferrable initially

char deferred inner

character describe input

char_length descriptor insensitive

character_length diagnostics int

coalesce disconnect integer

collate domain interval

collation end-exec join

column exception language

connect external last

connection extract leading

Table A-3: SQL92 keywords that are not Transact-SQL reserved words

System Administration Guide A-5

SYBASE SQL Server Release 10.0 SQL92 Keywords

left preserve time

local prior timestamp

lower real timezone_hour

match relative timezone_minute

minute restrict trailing

module right translate

month scroll translation

names second trim

natural section true

nchar session unknown

next session_user upper

no size usage

nullif smallint value

numeric space varchar

octet_length sql when

outer sqlcode whenever

output sqlerror write

overlaps sqlstate year

pad substring zone

partial system_user

position then

Table A-3: SQL92 keywords that are not Transact-SQL reserved words (continued)

A-6 Reserved Words

Potential SQL92 Reserved Words SYBASE SQL Server Release 10.0

Potential SQL92 Reserved Words

If you are using the ISO/IEC 9075:1989 standard, also avoid using
the words in Table A-4: Potential reserved words, as these words may
become SQL92 reserved words in the future.

after modify routine

alias new row

async none savepoint

before object search

boolean oid sensitive

breadth old sequence

completion operation signal

call operators similar

cycle others sqlexception

data parameters structure

depth pendant test

dictionary preorder there

each private type

elseif protected under

equals recursive variable

general ref virtual

ignore referencing visible

leave resignal wait

less return without

limit returns

loop role

Table A-4: Potential reserved words

System Administration Guide B-1

B. The System Tables

Introduction

All of the tables in the master database are system tables. Some of
these tables also occur in user databases—they are automatically
created when the create database command is issued.

These system tables occur in all databases:

System Table Contents

sysalternates One row for each SQL Server user mapped to a database
user

syscolumns One row for each column in a table or view, and for each
parameter in a procedure

syscomments One or more rows for each view, rule, default, trigger, and
procedure, giving SQL definition statement

sysconstraints One row for each referential and check constraint
associated with a table or column

sysdepends One row for each procedure, view, or table that is
referenced by a procedure, view, or trigger

sysindexes One row for each clustered or nonclustered index, and one
row for each table with no indexes, and an additional row
for each table containing text or image data.

syskeys One row for each primary, foreign, or common key; set by
user (not maintained by SQL Server)

syslogs Transaction log

sysobjects One row for each table, view, procedure, rule, trigger
default, log, and (in tempdb only) temporary object

sysprocedures One row for each view, rule, default, trigger, and
procedure, giving internal definition

sysprotects User permissions information

sysreferences One row for each referential integrity constraint declared
on a table or column

sysroles Maps server-wide roles to local database groups

syssegments One row for each segment (named collection of disk
pieces)

Table B-1: System tables that occur in all databases

B

B-2 The System Tables

Introduction SYBASE SQL Server Release 10.0

These system tables occur in the master database only:

systhresholds One row for each threshold defined for the database

systypes One row for each system-supplied and user-defined
datatype

sysusermessages One row for each user-defined message

sysusers One row for each user allowed in the database

System Table Contents

syscharsets One row for each character set or sort order

sysconfigures One row for each user-settable configuration parameter

syscurconfigs Information about configuration parameters currently
being used by SQL Server

sysdatabases One row for each database on SQL Server

sysdevices One row for each tape dump device, disk dump device,
disk for databases, and disk partition for databases

sysengines One row for each SQL Server engine currently on line

syslanguages One row for each language (except U.S. English) known to
the server

syslocks Information about active locks

sysloginroles One row for each server login that possesses a system-
defined role

syslogins One row for each valid SQL Server user account

sysmessages One row for each system error or warning

sysprocesses Information about server processes

sysremotelogins One row for each remote user

syssrvroles One row for each server-wide role

sysservers One row for each remote SQL Server

sysusages One row for each disk piece allocated to a database

Table B-2: System tables that occur in the master database only

System Table Contents

Table B-1: System tables that occur in all databases (continued)

System Administration Guide B-3

SYBASE SQL Server Release 10.0 Introduction

These system tables occur in the sybsecurity database only:

In the pages that follow, each system table is described in more
detail, including a list of their columns and datatypes. In addition,
the indexes and the system procedures that reference a particular
table are listed.

The word “reserved” in the column description means that the
column is currently not being used by SQL Server.

Permissions for use of the system tables can be controlled by the
database owner, just like permissions on any other tables.

The SYBASE installation program sets up permissions so that all users
can read the system tables, with the exception of a few fields. (See the
SQL Server Installation Guide for details.)

All direct updates on system tables are by default not allowed even
for the database owner. Instead, SQL Server supplies system
procedures to make any normally needed updates and additions to
system tables.

You can allow direct updates to the system tables if it becomes
necessary to modify them in a way that cannot be accomplished with
a system procedure. To accomplish this, a System Security Officer
must reset the configuration variable called allow updates with the
system procedure sp_configure, and a System Administrator must
then execute the reconfigure command. For information, see the System
Administration Guide.

There are entries in some of the master database tables that should
not be altered by any user under any circumstances. For example, do
not attempt to modify syslogs with a delete, update, or insert command.
In addition, an attempt to delete all rows from syslogs will put SQL
Server into an infinite loop that eventually fills up the entire
database.

Note that aggregate functions cannot be used on virtual tables such
as syslocks and sysprocesses.

System Table Contents

sysaudits One row for each audit record

sysauditoptions One row for each global audit option

Table B-3: System tables that occur in the sybsecurity database only

B-4 The System Tables

Introduction SYBASE SQL Server Release 10.0

A diagram of the system tables and their relationships is included at
the back of the bound System Administration Guide and the SQL
ServerReference Manuals Volumes 1 and 2. The diagram is not
included with camera-ready copy or CD-ROM versions of the
manuals.

System Administration Guide B-5

SYBASE SQL Server Release 10.0 sysalternates

sysalternates

(all databases)

Description

sysalternates contains one row for each SQL Server user mapped (or
aliased) to a user of the current database. When a user tries to access
a database, SQL Server looks for a valid uid entry in sysusers. If none
is found, it looks in sysalternates.suid. If the user’s suid is found there,
he or she is treated as the database user whose suid is listed in
sysalternates.altsuid.

On the SQL Server distribution tape, there are no entries in
sysalternates.

Indexes

Unique clustered index on suid

Referenced by System Procedures

sp_addalias, sp_adduser, sp_changedbowner, sp_dropalias, sp_dropuser,
sp_helpuser

Column Datatype Description

suid smallint Server user ID of user being mapped

altsuid smallint Server user ID of user to whom another user is
mapped

Table B-4: Columns in the sysalternates table

B-6 The System Tables

sysauditoptions SYBASE SQL Server Release 10.0

sysauditoptions

(sybsecurity database)

Description

sysauditoptions contains one row for each global audit option (options
set via sp_auditoption).These are the system-wide options only, and do
not include database, object, stored procedure, trigger, and user
audit options. The default value for each option is 0 or “off.”
sysauditoptions can be accessed only by System Security Officers.

Possible values for optn are:

Column Datatype Description

optn smallint Option number. See Table B-6.

value smallint Current value; one of the following:
off = 0
ok = 1
fail = 2
both = 3 (where applicable)

For error auditing (optn=13), the values are:
off = 0
nonfatal = 1
fatal = 2
both = 3

min smallint Minimum valid value for this option

max smallint Maximum valid value for this option

name varchar(30) Name of option

svalue varchar(30) String equivalent of the current value: for
example, “on”, “off”, “nonfatal”

comment varchar(255) Description of option

Table B-5: Columns in the sysauditoptions table

Option
Number Description

1 Enable or disable auditing
2 Unused
3 Login auditing

Table B-6: Audit option values and descriptions

System Administration Guide B-7

SYBASE SQL Server Release 10.0 sysauditoptions

Indexes

None

Referenced by System Procedures

sp_auditoption

4 Logout auditing
5 Server boot auditing
6 RPC connection auditing
7 Auditing use of the set command to turn roles on and off
8 Auditing commands requiring sa_role role
9 Auditing commands requiring sso_role role

10 Auditing commands requiring oper_role role
12 Auditing commands requiring navigator role
13 Error auditing
14 Ad hoc auditing
15 Auditing commands requiring replication role

Option
Number Description

Table B-6: Audit option values and descriptions (continued)

B-8 The System Tables

sysaudits SYBASE SQL Server Release 10.0

sysaudits

(sybsecurity database)

Description

The sysaudits table contains one row for each audit record.

Column Datatype Description

event smallint Type of event being audited. See Table B-8.

eventmod smallint Further information about the event.
Possible values are:
0 = no modifier for this event
1 = successful occurrence of this event; for

error auditing (event=13), a nonfatal
error

2 = failed occurrence of this event; for error
auditing (event=13), a fatal error

spid smallint Server process ID of the process that caused
the audit record to be written

eventtime datetime Date and time of the audited event

sequence smallint Sequence number of the record within a
single event; some events require more than
one audit record

suid smallint Server login ID of the user who performed
the audited event

dbid int null Database ID in which the audited event
occurred or the object/stored
procedure/trigger resides, depending on
the type of event

objid int null ID of the accessed object or stored
procedure/trigger

xactid binary(6) null ID of the transaction containing the audited
event. For a multi-database transaction, this
is the transaction ID from the database
where the transaction originated.

loginname varchar(30) null Login name corresponding to the suid

dbname varchar(30) null Database name corresponding to the dbid

objname varchar(30) null Object name corresponding to the objid

Table B-7: Columns in the sysaudits table

System Administration Guide B-9

SYBASE SQL Server Release 10.0 sysaudits

Possible values for the event column are shown in Table B-8, along
with the corresponding contents of the extrainfo column. Global
audit events have a code of less than 100. All other event types are
numbered starting at 100.

objowner varchar(30) null Name of the owner of objid

extrainfo varchar(255) null Additional information about the audited
event; contents vary with the type of event
audited. (See Table B-8.)

event
No. Description Contents of extrainfo Column

1 Enable auditing NULL
2 Disable auditing NULL
3 Login Host name
4 Logout Host name
5 Server boot Names of the server program,

master device, interfaces file path,
server, and error log file

6 RPC connection Remote server name, host name
7 Use of set command to turn roles

on and off
Role, new setting

8 Command requiring sa_role role Command type
9 Command requiring sso_role role Command type

10 Command requiring oper_role role Command type
12 Command requiring navigator role Command type
13 Error Error number, severity, and state
14 Ad hoc audit record User-supplied comment text
15 Command requiring replication

role
Command type

100 Database reference Command type
101 Table reference Command type
102 View reference Command type
103 Stored procedure execution Parameter list
104 Trigger execution NULL
105 User’s attempts to access a table Command type
106 User’s attempt to access a view Command type
107 User’s command text auditing Command batch text

Table B-8: Contents of event and extrainfo columns of sysaudits

Column Datatype Description

Table B-7: Columns in the sysaudits table

B-10 The System Tables

sysaudits SYBASE SQL Server Release 10.0

Indexes

None

Referenced by System Procedures

None

System Administration Guide B-11

SYBASE SQL Server Release 10.0 syscharsets

syscharsets

(master database only)

Description

syscharsets contains one row for each character set and sort order
defined for use by SQL Server. One of the sort orders is marked in
master..sysconfigures as the default sort order, which is the only one
actually in use.

Column Datatype Description

type smallint The type of entity this row represents. Numbers
from 1001 to 1999 represent character sets.
Numbers from 2000 to 2999 represent sort
orders.

id tinyint The ID for a character set or sort order. A sort
order is defined by the combination of the sort
order ID and the character set ID (csid). The
character set is defined by id, which must be
unique. Sybase reserves ID numbers 0-200.

csid tinyint If the row represents a character set, this field is
unused. If the row represents a sort order, this is
the ID of the character set that sort order is built
on. A character set row with this ID must exist
in this table.

status smallint Internal system status information bits.

name varchar(30) A unique name for the character set or sort
order. Must contain only the 7-bit ASCII letters
A-Z or a-z, digits 0-9, and underscores (_), and
begin with a letter.

description varchar(255) An optional description of the features of the
character set or sort order.

definition image The internal definition of the character set or
sort order. The structure of the data in this field
depends on the type.

Table B-9: Columns in the syscharsets table

B-12 The System Tables

syscharsets SYBASE SQL Server Release 10.0

Indexes

unique clustered index on id, csid, type
unique nonclustered index on name

Referenced by System Procedures

sp_checkreswords, sp_helpsort, sp_serverinfo

System Administration Guide B-13

SYBASE SQL Server Release 10.0 syscolumns

syscolumns

(all databases)

Description

syscolumns contains one row for every column in every table and
view, and a row for each parameter in a procedure.

Column Datatype Description

id int ID of table to which this column belongs or of
procedure with which this parameter is
associated

number smallint Sub-procedure number when the procedure is
grouped (0 for non-procedure entries)

colid tinyint Column ID

status tinyint Indicates unique position for bit columns,
whether NULL values are legal in this
column, and if a check constraint exists for the
column

type tinyint Physical storage type; copied from systypes

length tinyint Physical length of data; copied from systypes
or supplied by user

offset smallint Offset into the row where this column
appears, if negative, this is a variable-length
column

usertype smallint User type ID; copied from systypes

cdefault int ID of the procedure that generates default
value for this column

domain int Constraint ID of the first rule or check
constraint for this column

name sysname Column name

printfmt varchar(255) Reserved

prec tinyint Number of significant digits

scale tinyint Number of digits to the right of the decimal
point

Table B-10: Columns in the syscolumns table

B-14 The System Tables

syscolumns SYBASE SQL Server Release 10.0

Indexes

unique clustered index on id, number, colid

Referenced by System Procedures

sp_bindefault, sp_bindrule, sp_changegroup, sp_checknames, sp_checkreswords,
sp_column_privileges, sp_columns, sp_commonkey, sp_droptype, sp_dropuser,
sp_estspace, sp_foreignkey, sp_help, sp_helpconstraint, sp_helpjoins,
sp_helprotect, sp_primarykey, sp_rename, sp_special_columns,
sp_sproc_columns, sp_statistics, sp_unbindefault, sp_unbindrule

System Administration Guide B-15

SYBASE SQL Server Release 10.0 syscomments

syscomments

(all databases)

Description

syscomments contains entries for each view, rule, default, trigger,
table constraint, and procedure. The text field contains the original
definition statements. If the text is longer than 255 bytes, the entries
will span rows. Each object can occupy up to 65025 rows.

Indexes

unique clustered index on id, number, colid, texttype

Referenced by System Procedures

sp_helpconstraint, sp_helptext

Column Datatype Description

id int Object ID to which this text applies

number smallint Sub-procedure number when the procedure is
grouped (0 for non-procedure entries)

colid tinyint Sequence of 255 rows for the object

texttype smallint 0 for system-supplied comment (for views, rules,
defaults, triggers, and procedures). 1 for user-
supplied comment (users can add entries that
describe an object or column)

language smallint Reserved

text varchar(255) Actual text of SQL definition statement

colid2 tinyint Indicates next sequence of rows for the object (see
colid above); object can have up to 255 sequences of
255 rows each.

Table B-11: Columns in the syscomments table

B-16 The System Tables

sysconfigures SYBASE SQL Server Release 10.0

sysconfigures

(master database only)

Description

sysconfigures and syscurconfigs contain one row for each user-settable
configuration variable.

Here are the contents of sysconfigures:

Column Datatype Description

config smallint Configuration variable number

value int The user-modifiable value for the variable (being
used by SQL Server only if reconfigure has been
run)

comment varchar(255) Explanation of the configuration variable

status smallint Either 1 (dynamic, meaning variable takes effect
when reconfigure is issued) or 0 (variable takes
effect when SQL Server is restarted

Table B-12: Columns in the sysconfigures table

config value comment status
101 0 Maximum recovery interval in minutes 1
102 1 Allow updates to system tables 1
103 0 Number of user connections allowed 0
104 0 Size of available physical memory in 2k pages 0
105 0 Number of open databases allowed among all users 0
106 0 Number of locks for all users 0
107 0 Number of open database objects 0
108 0 Percentage of remaining memory used for procedure

cache
0

109 0 Default fill factor percentage 0
110 0 Average time slice per process in milliseconds 0
111 0 Default database size in megabytes 0
112 0 Tape retention period in days 0
113 0 Recovery flags 0
115 1 Allow triggers to be invoked within triggers 1
116 0 Number of devices 0

Table B-13: Contents of sysconfigures

System Administration Guide B-17

SYBASE SQL Server Release 10.0 sysconfigures

Indexes

unique clustered index on config

Referenced by System Procedures

sp_configure

117 1 Allow remote access 1
118 0 Number of remote logins 0
119 0 Number of remote sites 0
120 0 Number of remote connections 0
121 0 Number of pre-read packets per remote connection 0
122 1001 Upgrade version 1

123 50 Default sortorder ID 0
124 0 Default language 1
125 3 Language cache 0
126 1 Maximum online engines 0
127 1 Minimum online engines 0
128 0 Engine adjust interval 0
129 200 CPU accounting flush interval 1
130 1000 I/O accounting flush interval 1
131 1 Default character set ID 0
134 0 Stack size 0
135 0 System-wide password expiration interval 1
136 100 Audit queue size 0
137 0 Additional netmem 0
138 0 Default network packet size 0
139 0 Maximum network packet size 0
140 0 Number of extent I/O buffers 0
141 5000 Identity burning set factor 0

config value comment status

Table B-13: Contents of sysconfigures (continued)

B-18 The System Tables

sysconstraints SYBASE SQL Server Release 10.0

sysconstraints

(all databases)

Description

The sysconstraints table has one row for each referential and check
constraint associated with a table or column.

Whenever a user declares a new check constraint or referential
constraint using create table or alter table, SQL Server inserts a row into
the sysconstraints table. The row remains until a user executes alter
table to drop the constraint. Dropping a table by executing drop table
removes all rows associated with that table from the sysconstraints
table.

Indexes

clustered index on tableid, colid
unique nonclustered index on constrid

Referenced by System Procedures

sp_bindmsg, sp_bindrule, sp_helpconstraint, sp_unbindmsg, sp_unbindrule

Column Datatype Description

colid tinyint Column number in the table

spare1 tinyint Unused

constrid int Object ID of the constraint

tableid int ID of the table on which the constraint is declared

error int Constraint specific error message

status int The type of constraint:
0x0040 = a referential constraint
0x0080 = a check constraint

spare2 int Unused

Table B-14: Columns in the sysconstraints table

System Administration Guide B-19

SYBASE SQL Server Release 10.0 syscurconfigs

syscurconfigs

(master database only)

Description

syscurconfigs is built dynamically when queried. Its structure is
identical to that of sysconfigures. It contains an entry for each of the
configuration variables, as does sysconfigures, but with the current
values rather than the default values. In addition, it contains four
rows that describe the configuration structure.

Referenced by System Procedures

sp_configure, sp_helpsort, sp_serverinfo

Column Datatype Description

config smallint Configuration variable number

value int The user-modifiable value for the variable (being
used by SQL Server only if reconfigure has been
run)

comment varchar(255) Explanation of the configuration variable

status smallint Either 1 (dynamic, meaning variable takes effect
when reconfigure is issued) or 0 (variable takes
effect when SQL Server is restarted

Table B-15: Columns in the syscurconfigs table

B-20 The System Tables

sysdatabases SYBASE SQL Server Release 10.0

sysdatabases

(master database only)

Description

sysdatabases contains one row for each database on SQL Server. When
SQL Server is installed, sysdatabases contains entries for the master
database, the model database, the sybsystemprocs database and the
temporary database. If you have installed auditing, it also contains an
entry for the sybsecurity database

Column Datatype Description

name sysname Name of the database

dbid smallint Database ID

suid smallint Server user ID of database creator

status smallint Control bits; those which the user can set with
sp_dboption are marked “settable.” See Table B-
17.

version smallint Version of SQL Server code under which
database was created

logptr int Pointer to transaction log

crdate datetime Creation date

dumptrdate datetime Date of the last dump transaction

status2 intn Additional control bits. See Table B-18.

audflags intn Audit settings for database

deftabaud intn Bit-mask that defines default audit settings for
tables

defvwaud intn Bit-mask that defines default audit settings for
views

defpraud intn Bit-mask that defines default audit settings for
stored procedures

Table B-16: Columns in the sysdatabases table

System Administration Guide B-21

SYBASE SQL Server Release 10.0 sysdatabases

The bit representations for the status column are:

The bit representations for the status2 column are:

Indexes

unique clustered index on name
unique nonclustered index on dbid

Referenced by System Procedures

sp_addlogin, sp_addsegment, sp_addtype, sp_changedbowner, sp_checknames,
sp_checkreswords, sp_databases, sp_dboption, sp_dbremap, sp_dropdevice,
sp_dropsegment, sp_extendsegment, sp_helpdb, sp_logdevice, sp_renamedb,
sp_tables

Decimal Hex Status

4 0x04 select into/bulkcopy; settable

8 0x08 trunc log on chkpt; settable

16 0x10 no chkpt on recovery; settable

32 0x20 crashed while loading database, instructs recovery
not to proceed

256 0x100 database suspect; not recovered; cannot be opened
or used; can only be dropped with dbcc dbrepair

512 0x200 ddl in tran; settable

1024 0x400 read only; settable

2048 0x800 dbo use only; settable

4096 0x1000 single user; settable

8192 0x2000 allow nulls by default; settable

16384 0x4000 dbname has changed

Table B-17: status control bits in the sysdatabases table

Decimal Hex Status

1 0x01 abort tran on log full; settable

2 0x02 no free space acctg; settable

4 0x04 auto identity; settable

Table B-18: status2 control bits in the sysdatabases table

B-22 The System Tables

sysdepends SYBASE SQL Server Release 10.0

sysdepends

(all databases)

Description

sysdepends contains one row for each procedure, view, or table that is
referenced by a procedure, view, or trigger.

Indexes

unique clustered index on id, number, depid, depnumber

Referenced by System Procedures

sp_depends

Column Datatype Description

id int Object ID

number smallint Procedure number

depid int Dependent object ID

depnumbe
r

smallint Dependent procedure number

status smallint Internal status information

selall bit On if object is used in select * statement

resultobj bit On if object is being updated

readobj bit On if object is being read

Table B-19: Columns in the sysdepends table

System Administration Guide B-23

SYBASE SQL Server Release 10.0 sysdevices

sysdevices

(master database only)

Description

sysdevices contains one row for each tape dump device, disk dump
device, disk for databases, and disk partition for databases. On the
SQL Server distribution tape, there are four entries in sysdevices: one
for the master device (for databases), one for a disk dump device,
and two for tape dump devices.

The bit representations for the status column are additive. For
example, “3” indicates a physical disk that is also a default.

The status control bits are:

Column Datatype Description

low int First virtual page number on database
device (not used for dump devices)

high int Last virtual page number on database
device or dump device

status smallint Bit map indicating type of device, default
and mirror status. See Table B-21.

cntrltype smallint Controller type (0 if database device, 2 if
disk dump device or streaming tape, 3–8 if
tape dump device)

name sysname Logical name of dump device or of database
device

phyname varchar(127) Name of physical device

mirrorname varchar(127) Name of mirror device

Table B-20: Columns in the sysdevices table

Decimal Hex Status
1 0x01 default disk

2 0x02 physical disk

4 0x04 logical disk

8 0x08 skip header

Table B-21: status control bits in the sysdevices table

B-24 The System Tables

sysdevices SYBASE SQL Server Release 10.0

Indexes

unique clustered index on name

Referenced by System Procedures

sp_addsegment, sp_addumpdevice, sp_checknames, sp_checkreswords,
sp_configure, sp_diskdefault, sp_dropdevice, sp_dropsegment, sp_extendsegment,
sp_helpdb, sp_helpdevice, sp_helplog, sp_helpsegment, sp_logdevice,
sp_volchanged

16 0x10 dump device

32 0x20 serial writes

64 0x40 device mirrored

128 0x80 reads mirrored

256 0x100 secondary mirror side only

512 0x200 mirror enabled

2048 0x800 used internally

Decimal Hex Status

Table B-21: status control bits in the sysdevices table

System Administration Guide B-25

SYBASE SQL Server Release 10.0 sysengines

sysengines

(master database only)

Description

sysengines contains one row for each SQL Server engine currently on
line.

Indexes

none

Referenced by System Procedures

sp_monitor

Column Datatype Description

engine smallint Engine number

osprocid int Operating system process ID (may be NULL)

osprocname char Operating system process name (may be NULL)

status char One of: online, off-line, in create, in destroy,
debug

affinitied int Number of SQL Server processes with affinity to
this engine

cur_kpid int Kernel process ID of process currently running
on this engine, if any

last_kpid int Kernel process ID of process which previously
ran on this engine

idle_1 tinyint Reserved

idle_2 tinyint Reserved

idle_3 tinyint Reserved

idle_4 tinyint Reserved

starttime datetime Date and time engine came on line

Table B-22: Columns in the sysengines table

B-26 The System Tables

sysindexes SYBASE SQL Server Release 10.0

sysindexes

(all databases)

Description

sysindexes contains one row for each clustered index, one row for
each nonclustered index, one row for each table that has no clustered
index, and one row for each table that contains text or image columns.

The column doampg is used only if the row describes a table or
clustered index.

Column Datatype Description

name sysname Index or table name

id int ID of table, or ID of table to which index
belongs

indid smallint 0 if table, 1 if clustered index, >1 if
nonclustered, 255 if text chain

doampg int Page number for the object allocation map of a
table or clustered index

ioampg int Page number for the allocation map of a
nonclustered index

oampgtrips int Ratio of OAM page to data page residency in
cache

status2 int Internal system status information. See Table
B-24.

ipgtrips int Ratio of index page to data page residency in
cache

first int Pointer to first data or leaf page

root int Pointer to root page if entry is an index;
pointer to last page if entry is a table or text
chain

distribution int Pointer to distribution page (if entry is an
index)

usagecnt smallint Reserved

segment smallint Number of segment in which this object
resides

Table B-23: Columns in the sysindexes table

System Administration Guide B-27

SYBASE SQL Server Release 10.0 sysindexes

The bit representations for the status2 column are:

status smallint Internal system status information (See Table
B-25)

rowpage smallint Maximum number of rows per page

minlen smallint Minimum size of a row

maxlen smallint Maximum size of a row

maxirow smallint Maximum size of a non-leaf index row

keycnt smallint Number of keys for a clustered index; number
of keys+1 for a nonclustered index

keys1 varbinary(255) Description of key columns (if entry is an
index)

keys2 varbinary(255) Description of key columns (if entry is an
index)

soid tinyint Sort order ID that the index was created with.
‘0’ if there is no character data in the keys

csid tinyint Character set ID that the index was created
with. ‘0’ if there is no character data in the
keys

Decimal Hex Status

1 0x1 Index part of referential integrity constraint

2 0x2 Index part of primary key/unique constraint

Table B-24: status2 control bits in the sysindexes table

Column Datatype Description

Table B-23: Columns in the sysindexes table

B-28 The System Tables

sysindexes SYBASE SQL Server Release 10.0

The bit representations for the status column are:

Indexes

unique clustered index on id, indid

Referenced by System Procedures

sp_checknames, sp_checkreswords, sp_dropsegment, sp_estspace, sp_help,
sp_helpconstraint, sp_helpindex, sp_helplog, sp_helpsegment, sp_indsuspect,
sp_pkeys, sp_placeobject, sp_rename, sp_spaceused, sp_special_columns,
sp_statistics

Decimal Hex Status

1 0x1 Abort command or trigger if attempt to insert
duplicate key

2 0x2 Unique index

4 0x4 Abort command or trigger if attempt to insert
duplicate row

16 0x10 Clustered index

64 0x40 Index allows duplicate rows

32768 0x8000 Suspect index

Table B-25: status control bits in the sysindexes table

System Administration Guide B-29

SYBASE SQL Server Release 10.0 syskeys

syskeys

(all databases)

Description

syskeys contains one row for each primary, foreign, or common key.

Indexes

clustered index on id

Column Datatype Description

id int Object ID

type smallint Record type

depid int null Dependent object ID

keycnt int null The number of non-null keys

size int null Reserved

key1 int null Column ID

key2 int null Column ID

key3 int null Column ID

key4 int null Column ID

key5 int null Column ID

key6 int null Column ID

key7 int null Column ID

key8 int null Column ID

depkey1 int null Column ID

depkey2 int null Column ID

depkey3 int null Column ID

depkey4 int null Column ID

depkey5 int null Column ID

depkey6 int null Column ID

depkey7 int null Column ID

depkey8 int null Column ID

Table B-26: Columns in the syskeys table

B-30 The System Tables

syskeys SYBASE SQL Server Release 10.0

Referenced by System Procedures

sp_commonkey, sp_dropkey, sp_foreignkey, sp_helpjoins, sp_helpkey,
sp_primarykey

System Administration Guide B-31

SYBASE SQL Server Release 10.0 syslanguages

syslanguages

(master database only)

Description

syslanguages contains one row for each language known to SQL
Server. us_english is not in syslanguages, but is always available to
SQL Server.

Indexes

unique clustered index on langid
unique nonclustered index on name
unique nonclustered index on alias

Column Datatype Description

langid smallint Unique language ID

dateformat char(3) Date order, for example, “dmy”

datefirst tinyint First day of the week—1 for Monday, 2 for
Tuesday, and so on, up to 7 for Sunday.

upgrade int SQL Server version of last upgrade for this
language

name varchar(30) Official language name, for example,
“french”

alias varchar(30) Alternate language name, for example,
“francais”

months varchar(251) Comma-separated list of full-length month
names, in order from January to
December—each name is at most 20
characters long

shortmonths varchar(119) Comma-separated list of shortened month
names, in order from January to
December—each name is at most 9
characters long

days varchar(216) Comma-separated list of day names, in
order from Monday to Sunday—each name
is at most 30 characters long.

Table B-27: Columns in the syslanguages table

B-32 The System Tables

syslanguages SYBASE SQL Server Release 10.0

Referenced by System Procedures

sp_addlanguage, sp_addmessage, sp_checkreswords, sp_configure,
sp_droplanguage, sp_dropmessage, sp_getmessage, sp_helplanguage,
sp_setlangalias

System Administration Guide B-33

SYBASE SQL Server Release 10.0 syslocks

syslocks

(master database only)

Description

syslocks contains information about active locks, but it is not a normal
table. Rather, it is built dynamically when queried by a user. No
updates to syslocks are allowed.

The bit representations for the type column are:

Column Datatype Description

id int Table ID

dbid smallint Database ID

page int Page number

type smallint Type of lock (bit values for the type column are
listed in Table B-29)

spid smallint ID of process that holds the lock

class char(30) Name of the cursor this lock is associated with, if
any

Table B-28: Columns in the syslocks table

Decimal Hex Status

1 0x1 Exclusive table lock

2 0x2 Shared table lock

3 0x3 Exclusive intent lock (will do page locking on
indicated pages)

4 0x4 Shared intent lock

5 0x5 Exclusive page lock

6 0x6 Shared page lock

7 0x7 Update page lock (changes to exclusive if page is
actually modified)

256 0x100 Lock is blocking another process

512 0x200 Demand lock

Table B-29: type control bit in the syslocks table

B-34 The System Tables

syslocks SYBASE SQL Server Release 10.0

Indexes

none

Referenced by System Procedures

sp_lock

System Administration Guide B-35

SYBASE SQL Server Release 10.0 sysloginroles

sysloginroles

(master database only)

Description

sysloginroles contains a row for each instance of a server login
possessing a system-defined role. One row is added for each role
possessed by each login. For example, if a single server user is
granted three roles, three rows are added to sysloginroles associated
with that user’s suid.

Indexes

Clustered index on suid

Referenced by System Procedures

sp_displaylogin, sp_droplogin, sp _locklogin, sp_role

Column Datatype Description

suid suid Server user ID

srid smallint Server role ID; one of the following:

0
1
2
4
5
6

sa_role
sso_role
oper_role
navigator_role
replication_role
bcpin_labels_role

status smallint Reserved

Table B-30: Columns in the sysloginroles table

B-36 The System Tables

syslogins SYBASE SQL Server Release 10.0

syslogins

(master database only)

Description

syslogins contains one row for each valid SQL Server user account.
On the SQL Server distribution tape, syslogins contains an entry in
which the name is “sa”, the suid is 1, and the password is null. It also
contains an entry named “probe” with an unpublished password.
The login “probe” and the user “probe” exist for the Two Phase
Commit Probe Process, which uses a challenge and response
mechanism to access SQL Server.

Column Datatype Description

suid smallint Server user ID

status smallint Status of the account. See Table B-32.

accdate datetime Date totcpu and totio were last cleared

totcpu int CPU time accumulated by login

totio int I/O accumulated by login

spacelimit int Reserved

timelimit int Reserved

resultlimit int Reserved

dbname sysname Name of database in which to put user
when connection established

name sysname Login name of user

password varbinary Password of user (encrypted)

language varchar(30) User’s default language

pwdate datetime Date the password was last changed

audflags int User’s audit settings

fullname varchar(30) Full name of the user

Table B-31: Columns in the syslogins table

System Administration Guide B-37

SYBASE SQL Server Release 10.0 syslogins

The bit representations for the status column are:

Indexes

unique clustered index on suid
unique nonclustered index on name

Referenced by System Procedures

sp_addalias, sp_addlogin, sp_addremotelogin, sp_adduser, sp_changedbowner,
sp_checknames, sp_checkreswords, sp_clearstats, sp_displaylogin, sp_droplogin,
sp_helpdb, sp_helpuser, sp_locklogin, sp_modifylogin, sp_reportstats, sp_role

Decimal Hex Status

1 0x1 Password less than 6 characters, or NULL

2 0x2 Account is locked

4 0x4 Password is expired

Table B-32: status control bits in the syslogins table

B-38 The System Tables

syslogs SYBASE SQL Server Release 10.0

syslogs

(all databases)

Description

syslogs contains the transaction log. It is used by SQL Server for
recovery and roll forward, and is not useful to users.

You cannot delete from, insert into, or update syslogs. Every data
modification operation is logged, so before you can change syslogs,
the change must be logged. This means that a change operation on
syslogs adds a row to syslogs, which then must be logged, adding
another row to syslogs, and so on, producing an infinite loop. The
loop continues until the database becomes full.

Indexes

none

Column Datatype Description

xactid binary(6) Transaction ID

op tinyint Update operation number

Table B-33: Columns in the syslogs table

System Administration Guide B-39

SYBASE SQL Server Release 10.0 sysmessages

sysmessages

(master database only)

Description

sysmessages contains one row for each system error or warning that
can be returned by SQL Server. SQL Server displays the error
description on the user’s screen.

Indexes

clustered index on error, dlevel
unique nonclustered index on error, dlevel, langid

Referenced by System Procedures

sp_configure, sp_dboption, sp_depends, sp_droplanguage, sp_getmessage,
sp_help, sp_helpdb, sp_helpdevice, sp_helpremotelogin, sp_remoteoption

Column Datatype Description

error int Unique error number

severity smallint Severity level of error

dlevel smallint Reserved for number of descriptive level of this
message: terse, short, or long

description varchar(25) Explanation of error with place holders for
parameters

langid smallint Language, null for us_english

sqlstate varchar(5) SQLSTATE value for the error

Table B-34: Columns in the sysmessages table

B-40 The System Tables

sysobjects SYBASE SQL Server Release 10.0

sysobjects

(all databases)

Description

sysobjects contains one row for each table, view, stored procedure,
log, rule, default, trigger, check constraint, referential constraint, and
(in tempdb only) temporary object.

Column Datatype Description

name sysname Object name

id int Object ID

uid smallint User ID of object owner

type char(2) One of the following object types:

S
U
V
L
P
R
D
TR
RI

system table
user table
view
log
procedure
rule
default
trigger
referential constraint

userstat smallint Application-dependent type information (32768
decimal [0x8000 hex] indicates to Data
WorkbenchTM that a procedure is a report)

sysstat smallint Internal status information (256 decimal [0x100
hex] indicates that table is read-only)

indexdel smallint Index delete count (incremented if an index is
deleted)

schemacnt smallint Count of changes in schema of a given object
(incremented if a rule or default is added)

sysstat2 smallint Additional internal status information. See Table
B-36.

crdate datetime Date object was created

expdate datetime Reserved

deltrig int Stored procedure ID of a delete trigger

instrig int Stored procedure ID of an insert trigger

Table B-35: Columns in the sysobjects table

System Administration Guide B-41

SYBASE SQL Server Release 10.0 sysobjects

The bit representations for the sysstat2 column are:

Indexes

unique clustered index on id
unique nonclustered index on name, uid

Referenced by System Procedures

sp_addmessage, sp_addthreshold, sp_bindefault, sp_bindmsg, sp_bindrule,
sp_checknames, sp_checkreswords, sp_column_privileges, sp_columns,
sp_commonkey, sp_depends, sp_dropgroup, sp_dropkey, sp_dropsegment,
sp_dropthreshold, sp_droptype, sp_dropuser, sp_estspace, sp_fkeys,
sp_foreignkey, sp_help, sp_helpconstraint, sp_helpindex, sp_helpjoins, sp_helpkey,
sp_helprotect, sp_helpthreshold, sp_indsuspect, sp_modifythreshold, sp_pkeys,
sp_placeobject, sp_primarykey, sp_procxmode, sp_recompile, sp_remap,
sp_rename, sp_spaceused, sp_sproc_columns, sp_statistics,
sp_stored_procedures, sp_table_privileges, sp_tables, sp_unbindefault,
sp_unbindmsg, sp_unbindrule

updtrig int Stored procedure ID of an update trigger

seltrig int Reserved

ckfirst int ID of first check constraint on the table

cache smallint Reserved

audflags int Object’s audit settings

objspare int Spare

Decimal Hex Status

1 0x1 Table has referential constraint

2 0x2 Table has foreign key constraint

4 0x4 Table has more than one check constraint

8 0x8 Table has primary key constraint

16 0x10 Chained transaction mode only stored procedure

32 0x20 Any transaction mode stored procedure

64 0x40 Table has IDENTITY field

Table B-36: systat2 control bits in the sysobjects table

Column Datatype Description

Table B-35: Columns in the sysobjects table (continued)

B-42 The System Tables

sysprocedures SYBASE SQL Server Release 10.0

sysprocedures

(all databases)

Description

sysprocedures contains entries for each view, default, rule, trigger,
procedure, declarative default, and check constraint. The plan or
sequence tree for each object is stored in binary form. If the sequence
tree doesn’t fit in one entry, it is broken into more than one row. The
sequence column identifies the sub-rows.

The bit representations for the type column are:

Indexes

unique clustered index on id, type, sequence, number

Referenced by System Procedures

sp_bindefault, sp_bindrule, sp_remap, sp_sproc_columns, sp_stored_procedures,
sp_unbindefault, sp_unbindrule

Column Datatype Description

type smallint Object type. See Table B-38.

id int Object ID

sequence smallint Sequence number if more than one row is used to
describe this object

status smallint Internal system status

number smallint Sub-procedure number when the procedure is
grouped (0 for non-procedure entries)

Table B-37: Columns in the sysprocedures table

Decimal Hex Status

1 0x1 Entry describes a plan (reserved)

2 0x2 Entry describes a tree

Table B-38: type control bits in the sysprocedures table

System Administration Guide B-43

SYBASE SQL Server Release 10.0 sysprocesses

sysprocesses

(master database only)

Description

sysprocesses contains information about SQL Server processes, but it
is not a normal table. Rather, it is built dynamically when queried by
a user. No updates to sysprocesses are allowed.

Use the kill statement to kill a process.

Column Datatype Description

spid smallint Process ID

kpid int Kernel process ID

enginenum int Number of engine on which process is being
executed

status char(12) Process ID status, one of:
infected
background
recv sleep
send sleep
alarm sleep
lock sleep
sleeping
runnable
running
stopped
bad status
log suspend

suid smallint Server user ID of user who issued command

hostname char(10) Name of host computer

program_name char(16) Name of front-end module

hostprocess char(8) Host process ID number

cmd char(16) Command currently being executed

cpu int Cumulative cpu time for process in ticks

physical_io int Number of disk reads and writes for current
command

memusage int Amount of memory allocated to process

blocked smallint Process ID of blocking process, if any

Table B-39: Columns in the sysprocesses table

B-44 The System Tables

sysprocesses SYBASE SQL Server Release 10.0

Indexes

none

Referenced by System Procedures

sp_dboption, sp_droplogin, sp_locklogin, sp_role, sp_who

dbid smallint Database ID

uid smallint ID of user who executed command

gid smallint Group ID of user who executed command

tran_name varchar(64) Name of the active transaction

time_blocked int Time blocked in seconds

network_pktsz int Current connection’s network packet size

Column Datatype Description

Table B-39: Columns in the sysprocesses table

System Administration Guide B-45

SYBASE SQL Server Release 10.0 sysprotects

sysprotects

(all databases)

Description

sysprotects contains information on user permissions information—
entries for each grant and revoke statement that has been issued.

Indexes

unique clustered index on id, action, grantor, uid, protecttype

Column Datatype Description

id int ID of object to which this permission applies

uid smallint ID of user or group to which this permission
applies

action tinyint One of the following permissions:
select = 193
insert = 195
delete = 196
update = 197
execute = 224
references = 151
create database = 203
create default = 233
create procedure = 222
create rule = 236
create table = 198
create view = 207
dump database = 228
dump transaction = 235

protecttype tinyint One of the following values:
grant with grant = 0
grant (permanent) = 1
revoke (permanent) = 2

columns varbinary(32) Bit map of columns to which this select or
update permission applies. Bit 0 indicates
all columns; 1 means permission applies to
that column; null means no information.

grantor smallint User ID of the grantor

Table B-40: Columns in the sysprotects table

B-46 The System Tables

sysprotects SYBASE SQL Server Release 10.0

Referenced by System Procedures

sp_changegroup, sp_dropgroup, sp_dropuser, sp_helprotect,
sp_stored_procedures, sp_tables

System Administration Guide B-47

SYBASE SQL Server Release 10.0 sysreferences

sysreferences

(all databases)

Description

sysreferences contains one row for each referential integrity constraint
declared on a table or column.

Column Datatype Description

indexid smallint ID of the unique index on referenced columns

constrid int Object ID of the constraint from sysobjects

tableid int Object ID of the referencing table

reftabid int Object ID of the referenced table

keycnt smallint The number of columns in the foreign key

status smallint Reserved

frgndbid smallint Reserved

pmrydbid smallint Reserved

spare2 int Reserved

fokey1
.
.
.

fokey16

tinyint

tinyint

Column ID of the first referencing column

Column ID of the 16th referencing column

refkey1
.
.
.

refkey16

tinyint

tinyint

Column ID of the first referenced column

Column ID of the 16th referenced column

frgndbname varchar(30) Name of the database that includes the
referencing table (the table with the foreign
key). Null if the referencing table is in the
current database.

pmrydbname varchar(30) Name of the database that includes the
referenced table (the table with the primary
key). Null if the referenced table is in the current
database.

Table B-41: Columns in the sysreferences table

B-48 The System Tables

sysreferences SYBASE SQL Server Release 10.0

Indexes

clustered index on frgndbname, tableid
unique nonclustered index on frgndbname, constrid
nonclustered index on pmrydbname, reftabid, indexid

Referenced by System Procedures

sp_fkeys, sp_helpconstraint

System Administration Guide B-49

SYBASE SQL Server Release 10.0 sysremotelogins

sysremotelogins

(master database only)

Description

sysremotelogins contains one row for each remote user who is allowed
to execute remote procedure calls on this SQL Server.

Indexes

unique clustered index on remoteserverid, remoteusername

Referenced by System Procedures

sp_addremotelogin, sp_checknames, sp_checkreswords, sp_dropremotelogin,
sp_dropserver, sp_helpremotelogin, sp_remoteoption

Column Datatype Description

remoteserverid smallint Identifies the remote server

remoteusername varchar(30) User’s login name on remote server

suid smallint Local server user ID

status smallint Bitmap of options

Table B-42: Columns in the sysremotelogins table

B-50 The System Tables

sysroles SYBASE SQL Server Release 10.0

sysroles

(all databases)

Description

sysroles maps server role IDs to local role IDs.

Indexes

Unique clustered index on lrid

Referenced by System Procedures

None

Column Datatype Description

id smallint Server role ID (srid)

lrid smallint Local role ID

type smallint Unused

status smallint Unused

Table B-43: Columns in the sysroles table

System Administration Guide B-51

SYBASE SQL Server Release 10.0 syssegments

syssegments

(all databases)

Description

syssegments contains one row for each segment (named collection of
disk pieces). The default entries are: segment 0 (system) for system
tables; segment 2 (logsegment) for the transaction log; and segment 1
(default) for other objects. Each database has an entry in sysusages
contain these segments in its maps.

Indexes

none

Referenced by System Procedures

sp_addsegment, sp_addthreshold, sp_checknames, sp_checkreswords,
sp_dropsegment, sp_dropthreshold, sp_dropuser, sp_extendsegment, sp_helpdb,
sp_helpindex, sp_helpsegment, sp_helpthreshold, sp_modifythreshold,
sp_placeobject

Column Datatype Description

segment smallint Segment number

name sysname Segment name

status int null Indicates which segment is default segment

Table B-44: Columns in the syssegments table

B-52 The System Tables

sysservers SYBASE SQL Server Release 10.0

sysservers

(master database only)

Description

sysservers contains one row for each remote SQL Server, Backup
Server, or Open Server on which this SQL Server can execute remote
procedure calls.

Indexes

unique clustered index on srvid
unique nonclustered index on srvname

Referenced by System Procedures

sp_addremotelogin, sp_addserver, sp_checknames, sp_checkreswords,
sp_configure, sp_dropremotelogin, sp_dropserver, sp_helpremotelogin,
sp_helpserver, sp_remoteoption, sp_serveroption

Column Datatype Description

srvid smallint ID number (for local use only) of the remote
server

srvstatus smallint Bitmap of options

srvname varchar(30) Server name

srvnetname varchar(32) Interfaces file name for the server

Table B-45: Columns in the sysservers table

System Administration Guide B-53

SYBASE SQL Server Release 10.0 syssrvroles

syssrvroles

(master database only)

Description

syssrvroles contains a row for each server-wide role.

Indexes

Unique clustered index on srid

Referenced by System Procedures

sp_adduser, sp_changegroup, sp_displaylogin, sp_dropgroup, sp_helpgroup,
sp_role

Column Datatype Description

srid smallint Server role ID

name varchar Name of the role

Table B-46: Columns in the syssrvroles table

B-54 The System Tables

systhresholds SYBASE SQL Server Release 10.0

systhresholds

(all databases)

Description

systhresholds contains one row for each threshold defined for the
database.

Indexes

Unique clustered index on segment, free_space

Referenced by System Procedures

sp_addthreshold, sp_dropsegment, sp_dropthreshold, sp_dropuser,
sp_helpthreshold, sp_modifythreshold

Column Datatype Description

segment smallint Segment number for which free space is
being monitored

free_space int Size of threshold, in 2K pages (4K for
Stratus)

status smallint Bit 1 equals 1 for the logsegment’s last-
chance threshold, 0 for all other thresholds

proc_name varchar(255) Name of the procedure that is executed
when the number of unused pages on
segment falls below free_space.

suid smallint The server user ID of the user who added
the threshold or modified it most recently

currauth varbinary(255) A bit mask that indicates which roles were
active for suid at the time the threshold was
added or most recently modified. When the
threshold is crossed, proc_name executes
with this set of roles, less any that have been
deactivated since the threshold was added
or last modified.

Table B-47: Columns in the systhresholds table

System Administration Guide B-55

SYBASE SQL Server Release 10.0 systypes

systypes

(all databases)

Description

systypes contains one row for each system-supplied and user-defined
datatype. Domains (defined by rules) and defaults are given, if they
exist.

The rows that describe system-supplied datatypes cannot be altered.

The listing that follows includes the system-supplied datatype name,
hierarchy, type (not necessarily unique), and usertype (unique). The

Column Datatype Description

uid smallint User ID of datatype creator

usertype smallint User type ID

variable bit 1 if datatype is variable length; 0 otherwise

allownulls bit Indicates whether nulls are allowed for this
datatype

type tinyint Physical storage datatype

length tinyint Physical length of datatype

tdefault int ID of system procedure that generates default for
this datatype

domain int ID of system procedure that contains integrity
checks for this datatype

name sysname Datatype name

printfmt varchar(255) Reserved

prec tinyint Number of significant digits

scale tinyint Number of digits to the right of the decimal point

ident tinyint 1 if column has the IDENTITY property, 0 if not

hierarchy tinyint Precedence of the datatype in mixed mode
arithmetic

Table B-48: Columns in the systypes table

B-56 The System Tables

systypes SYBASE SQL Server Release 10.0

datatypes are ordered by hierarchy. In mixed mode arithmetic, the
datatype with the lowest hierarchy takes precedence:

Indexes

unique clustered index on name
unique nonclustered index on usertype

Referenced by System Procedures

sp_addtype, sp_bindefault, sp_bindrule, sp_checknames, sp_checkreswords,
sp_columns, sp_datatype_info, sp_droptype, sp_dropuser, sp_help, sp_rename,
sp_special_columns, sp_sproc_columns,sp_unbindefault, sp_unbindrule

name hierarchy type usertype
floatn 1 109 14
float 2 62 8
datetimn 3 111 15
datetime 4 61 12
real 5 59 23
numericn 6 108 28
numeric 7 63 10
decimaln 8 106 27
decimal 9 55 26
moneyn 10 110 17
money 11 60 11
smallmoney 12 122 21
smalldatetime 13 58 22
intn 14 38 13
int 15 56 7
smallint 16 52 6
tinyint 17 48 5
bit 18 50 16
varchar 19 39 2
sysname 19 39 18
nvarchar 19 39 25
char 20 47 1
nchar 20 47 24
varbinary 21 37 4
timestamp 21 37 80
binary 22 45 3
text 23 35 19
image 24 34 20

Table B-49: Datatype names, hierarchy, types, and usertypes

System Administration Guide B-57

SYBASE SQL Server Release 10.0 sysusages

sysusages

(master database only)

Description

sysusages contains one row for each disk allocation piece assigned to
a database. Each database contains a specified number of database
(logical) page numbers. Each disk piece includes the segments on the
SQL Server distribution tape, segments 0 and 1.

The create database command checks sysdevices and sysusages to find
available disk allocation pieces. One or more contiguous disk
allocation pieces is assigned to the database, and the mapping is
recorded in sysusages.

Indexes

unique clustered index on dbid, lstart
unique nonclustered index on vstart

Referenced by System Procedures

sp_addsegment, sp_addthreshold, sp_databases, sp_dropdevice, sp_dropsegment,
sp_extendsegment, sp_helpdb, sp_helplog, sp_helpsegment, sp_logdevice,
sp_modifythreshold, sp_spaceused

Column Datatype Description

dbid smallint Database ID

segmap int Bit map of possible segment assignments

lstart int First database (logical) page number

size int Number of contiguous database (logical) pages

vstart int Starting virtual page number

pad smallint Unused

unreservedpgs int Free space not part of an allocated extent

Table B-50: Columns in the sysusages table

B-58 The System Tables

sysusermessages SYBASE SQL Server Release 10.0

sysusermessages

(all databases)

Description

sysusermessages contains one row for each user-defined message that
can be returned by SQL Server.

Indexes

clustered index on error
unique nonclustered index on error, langid

Referenced by System Procedures

sp_addmessage, sp_bindmsg, sp_dropmessage, sp_getmessage,
sp_helpconstraint

Column Datatype Description

error int Unique error number. Must be 20000 or above.

uid smallint User ID of the message creator

description varchar(255) User-defined message with optional place
holders for parameters

langid smallint Language ID for this message; null for
us_english

Table B-51: Columns in the sysusermessages table

System Administration Guide B-59

SYBASE SQL Server Release 10.0 sysusers

sysusers

(all databases)

Description

sysusers contains one row for each user allowed in the database, and
one row for each group or role.

On the SQL Server distribution tape, master..sysusers contains some
initial users: “dbo,” whose suid is 1 and uid is 1; “guest,” whose suid
is -1 and uid is 2; and “public,” whose suid is -2 and uid is 0. In
addition, each role (sa_role, sso_role, and so on) is listed in sysusers,
because SQL Server treats roles much like groups.

The user guest provides a mechanism for giving users not explicitly
listed in sysusers access to the database with a restricted set of
permissions. The “guest” entry in master means that any user with an
account on SQL Server (that is, with an entry in syslogins) can access
master.

The user “public” refers to all users. The keyword public is used with
the grant and revoke commands to signify that permission is being
given to or taken away from all users.

Indexes

unique clustered index on suid
unique nonclustered index on name
unique nonclustered index on uid

Column Datatype Description

suid smallint Server user ID, copied from syslogins.

uid smallint User ID, unique in this database, used for
granting and revoking permissions. User ID 1 is
“dbo”.

gid smallint Group ID to which this user belongs. If uid = gid,
this entry defines a group. The group “public”
has suid = -2; all other groups have suid= - gid.

name sysname User or group name, unique in this database

environ varchar(255) Reserved

Table B-52: Columns in the sysusers table

B-60 The System Tables

sysusers SYBASE SQL Server Release 10.0

Referenced by System Procedures

sp_addalias, sp_addgroup, sp_adduser, sp_changedbowner, sp_changegroup,
sp_checknames, sp_checkreswords, sp_column_privileges, sp_depends,
sp_dropgroup, sp_droptype, sp_dropuser, sp_helpgroup, sp_helprotect,
sp_helpuser, sp_indsuspect, sp_stored_procedures, sp_table_privileges, sp_tables

System Administration Guide C-1

C. The pubs2 DatabaseC
This is the sample database pubs2. The names of the 11 tables are
publishers, authors, titles, titleauthor, sales, salesdetail, stores, discounts,
roysched, au_pix, and blurbs.

The header for each column lists its datatype (including the user-
defined datatypes) and its null/not null status. Defaults, rules,
triggers, and indexes are noted where they apply.

Tables in the pubs2 Database

a. The pub_id rule states that the data must be 1389, 0736, 0877, 1622, or 1756, or must match the pattern 99[0-9][0-9].

publishers

pub_id

char(4)

not null

pub_idrulea

clust, uniq

pub_name

varchar(40)

null

city

varchar(20)

null

state

char(2)

null

0736 New Age Books Boston MA

0877 Binnet & Hardley Washington DC

1389 Algodata Infosystems Berkeley CA

C-2 The pubs2 Database

Tables in the pubs2 Database SYBASE SQL Server Release 10.0

a. The default UNKNOWN is inserted if no data is entered.

authors

au_id

id

not null

au_lname

varchar(40)

not null

au_fname

varchar(20)

not null

phone

char(12)

not null

UNKNOWNa

address

varchar(12)

null

city

varchar(20)

null

state

char(2)

null

country

varchar(12)

null

postalcode

char(10)

null

clust, uniq nonclust

172-32-1176 White Johnson 408 496-7223 10932 Bigge Rd. Menlo Park CA USA 94025

213-46-8915 Green Marjorie 415 986-7020 309 63rd St. #411 Oakland CA USA 94618

238-95-7766 Carson Cheryl 415 548-7723 589 Darwin Ln. Berkeley CA USA 94705

267-41-2394 O’Leary Michael 408 286-2428 22 Cleveland Av. #14 San Jose CA USA 95128

274-80-9391 Straight Dick 415 834-2919 5420 College Av. Oakland CA USA 94609

341-22-1782 Smith Meander 913 843-0462 10 Mississippi Dr. Lawrence KS USA 66044

409-56-7008 Bennet Abraham 415 658-9932 6223 Bateman St. Berkeley CA USA 94705

427-17-2319 Dull Ann 415 836-7128 3410 Blonde St. Palo Alto CA USA 94301

472-27-2349 Gringlesby Burt 707 938-6445 PO Box 792 Covelo CA USA 95428

486-29-1786 Locksley Chastity 415 585-4620 18 Broadway Av. San Francisco CA USA 94130

527-72-3246 Greene Morningstar 615 297-2723 22 Graybar House Rd. Nashville TN USA 37215

648-92-1872 Blotchet-Halls Reginald 503 745-6402 55 Hillsdale Bl. Corvallis OR USA 97330

672-71-3249 Yokomoto Akiko 415 935-4228 3 Silver Ct. Walnut Creek CA USA 94595

712-45-1867 del Castillo Innes 615 996-8275 2286 Cram Pl. #86 Ann Arbor MI USA 48105

722-51-5454 DeFrance Michel 219 547-9982 3 Balding Pl. Gary IN USA 46403

724-08-9931 Stringer Dirk 415 843-2991 5420 Telegraph Av. Oakland CA USA 94609

724-80-9391 MacFeather Stearns 415 354-7128 44 Upland Hts. Oakland CA USA 94612

756-30-7391 Karsen Livia 415 534-9219 5720 McAuley St. Oakland CA USA 94609

807-91-6654 Panteley Sylvia 301 946-8853 1956 Arlington Pl. Rockville MD USA 20853

846-92-7186 Hunter Sheryl 415 836-7128 3410 Blonde St. Palo Alto CA USA 94301

893-72-1158 McBadden Heather 707 448-4982 301 Putnam Vacaville CA USA 95688

899-46-2035 Ringer Anne 801 826-0752 67 Seventh Av. Salt Lake City UT USA 84152

998-72-3567 Ringer Albert 801 826-0752 67 Seventh Av. Salt Lake City UT USA 84152

System Administration Guide C-3

SYBASE SQL Server Release 10.0 Tables in the pubs2 Database

titles

title_id

tid

not null

deltitle3

clust, uniq

title

varchar(80)

not null

nonclust

type

char(12)

not null

UNDECIDED1

pub_id

char(4)

null

price

money

null

advance

money

null

total_sales

int

null

notes

varchar(200)

null

pubdate

datetime

not null

getdate()2

contract

bit

not null

BU1032 The Busy
Executive’s
Database Guide

business 1389 19.99 5000.00 4095 An overview of available
database systems with
emphasis on common
business applications.
Illustrated.

Jun 6, 1986 1

BU1111 Cooking with
Computers:
Surreptitious
Balance Sheets

business 1389 11.95 5000.00 3876 Helpful hints on how to use
your electronic resources to
the best advantage.

Jun 9, 1988 1

BU2075 You Can Combat
Computer
Stress!

business 0736 2.99 10125.00 18722 The latest medical and
psychological techniques
for living with the electronic
office. Easy-to-understand
explanations.

Jun 30, 1985 1

BU7832 Straight Talk
About
Computers

business 1389 19.99 5000.00 4095 Annotated analysis of what
computers can do for you: a
no-hype guide for the
critical user.

Jun 22, 1987 1

MC2222 Silicon Valley
Gastronomic
Treats

mod_cook 0877 19.99 0.00 2032 Favorite recipes for quick,
easy, and elegant meals,
tried and tested by people
who never have time to eat,
let alone cook.

Jun 9, 1989 1

MC3021 The Gourmet
Microwave

mod_cook 0877 2.99 15000.00 22246 Traditional French gourmet
recipes adapted for modern
microwave cooking.

Jun 18, 1985 1

PC1035 But Is It User
Friendly?

popular_comp 1389 22.95 7000.00 8780 A survey of software for the
naive user, focusing on the
‘friendliness’ of each.

Jun 30, 1986 1

MC3026 The Psychology
of Computer
Cooking

UNDECIDED 0877 NULL NULL NULL NULL Jul 24, 1991 0

PC8888 Secrets of Silicon
Valley

popular_comp 1389 20.00 8000.00 4095 Muckraking reporting by
two courageous women on
the world’s largest
computer hardware and
software manufacturers.

Jun 12, 1987 1

1. The default UNDECIDED is inserted if no data is entered in the column.
2. The getdate function inserts the current date as the default if no data is entered in the column.
3. The deltitle trigger prohibits deleting a title if the title_id is listed in the sales table.

C-4 The pubs2 Database

Tables in the pubs2 Database SYBASE SQL Server Release 10.0

PC9999 Net Etiquette popular_comp 1389 NULL NULL NULL A must-read for computer
conferencing debutantes!

Jul 24, 1991 0

PS1372 Computer
Phobic and Non-
Phobic
Individuals:
Behavior
Variations

psychology 0877 21.59 7000.00 375 A must for the specialist,
this book examines the
difference between those
who hate and fear
computers and those who
think they are swell.

Oct 21,1990 1

PS2091 Is Anger the
Enemy?

psychology 0736 10.95 2275.00 2045 Carefully researched study
of the effects of strong
emotions on the body.
Metabolic charts included.

Jun 15, 1989 1

PS2106 Life Without Fear psychology 0736 7.00 6000.00 111 New exercise, meditation,
and nutritional techniques
that can reduce the shock
of daily interactions.
Popular audience. Sample
menus included, exercise
video available separately.

Oct 5, 1990 1

PS3333 Prolonged Data
Deprivation: Four
Case Studies

psychology 0736 19.99 2000.00 4072 What happens when the
data runs dry? Searching
evaluations of information-
shortage effects on heavy
users.

Jun 12, 1988 1

PS7777 Emotional
Security: A New
Algorithm

psychology 0736 7.99 4000.00 3336 Protecting yourself and
your loved ones from undue
emotional stress in the
modern world. Use of
computer and nutritional
aids emphasized.

Jun 12, 1988 1

TC3218 Onions, Leeks,
and Garlic:
Cooking Secrets
of the
Mediterranean

trad_cook 0877 20.95 7000.00 375 Profusely illustrated in
color, this makes a
wonderful gift book for a
cuisine-oriented friend.

Oct 21, 1990 1

TC4203 Fifty Years in
Buckingham
Palace Kitchens

trad_cook 0877 11.95 4000.00 15096 More anecdotes from the
Queen’s favorite cook
describing life among
English royalty. Recipes,
techniques, tender
vignettes.

Jun 12, 1985 1

titles

title_id

tid

not null

deltitle3

clust, uniq

title

varchar(80)

not null

nonclust

type

char(12)

not null

UNDECIDED1

pub_id

char(4)

null

price

money

null

advance

money

null

total_sales

int

null

notes

varchar(200)

null

pubdate

datetime

not null

getdate()2

contract

bit

not null

1. The default UNDECIDED is inserted if no data is entered in the column.
2. The getdate function inserts the current date as the default if no data is entered in the column.
3. The deltitle trigger prohibits deleting a title if the title_id is listed in the sales table.

System Administration Guide C-5

SYBASE SQL Server Release 10.0 Tables in the pubs2 Database

TC7777 Sushi, Anyone? trad_cook 0877 14.99 8000.00 4095 Detailed instructions on
improving your position in
life by learning how to make
authentic Japanese sushi in
your spare time. 5-10%
increase in number of
friends per recipe reported
from beta test.

Jun 12, 1987 1

titles

title_id

tid

not null

deltitle3

clust, uniq

title

varchar(80)

not null

nonclust

type

char(12)

not null

UNDECIDED1

pub_id

char(4)

null

price

money

null

advance

money

null

total_sales

int

null

notes

varchar(200)

null

pubdate

datetime

not null

getdate()2

contract

bit

not null

1. The default UNDECIDED is inserted if no data is entered in the column.
2. The getdate function inserts the current date as the default if no data is entered in the column.
3. The deltitle trigger prohibits deleting a title if the title_id is listed in the sales table.

C-6 The pubs2 Database

Tables in the pubs2 Database SYBASE SQL Server Release 10.0

titleauthor

au_id
id

not null
nonclust

title_id
tid

not null
nonclust

au_ord
tinyint
null

royaltyper
int
null

uniq, clust, composite

172-32-1176 PS3333 1 100

213-46-8915 BU1032 2 40

213-46-8915 BU2075 1 100

238-95-7766 PC1035 1 100

267-41-2394 BU1111 2 40

267-41-2394 TC7777 2 30

274-80-9391 BU7832 1 100

409-56-7008 BU1032 1 60

427-17-2319 PC8888 1 50

472-27-2349 TC7777 3 30

486-29-1786 PC9999 1 100

486-29-1786 PS7777 1 100

648-92-1872 TC4203 1 100

672-71-3249 TC7777 1 40

712-45-1867 MC2222 1 100

722-51-5454 MC3021 1 75

724-80-9391 BU1111 1 60

724-80-9391 PS1372 2 25

756-30-7391 PS1372 1 75

807-91-6654 TC3218 1 100

846-92-7186 PC8888 2 50

899-46-2035 MC3021 2 25

899-46-2035 PS2091 2 50

998-72-3567 PS2091 1 50

998-72-3567 PS2106 1 100

System Administration Guide C-7

SYBASE SQL Server Release 10.0 Tables in the pubs2 Database

The pic column contains binary data, which is not reproduced in this
table in its entirety. The pictures represented by this data are shown on
the next page. Since the image data (six pictures, two each in PICT, TIF,
and Sun raster file formats) is quite large, you should run the
installpix2 script only if you want to use or test the image datatype. The
image data is supplied to show how SYBASE stores image data. Sybase
does not supply any tools for displaying image data: you must use the
appropriate screen graphics tools in order to display the images once
you have extracted them from the database.

au_pix

au_id

id

not null

pic

image

null

format_type

char(11)

null

bytesize

int

null

pixwidth_hor

char(14)

null

pixwidth_vert

char(14)

null

409-56-7008 0x0000... PICT 30220 626 635

486-29-1786 0x59a6... Sunraster 27931 647 640

648-92-1872 0x59a6... Sunraster 36974 647 640

672-71-3249 0x000a... PICT 13487 654 639

899-46-2035 0x4949... TIF 52023 648 641

998-72-3567 0x4949... TIF 52336 653 637

C-8 The pubs2 Database

Tables in the pubs2 Database SYBASE SQL Server Release 10.0

Authors’ Portraits from the au_pix Table

672-71-3249Akiko Yokomoto

899-46-2035Anne Ringer

409-56-7008Bennet Abraham 648-92-1872Reginald Blotchet-Halls

998-72-3567Albert Ringer

486-29-1786Chastity Locksley

System Administration Guide C-9

SYBASE SQL Server Release 10.0 Tables in the pubs2 Database

salesdetail
stor_id
char(4)
not null

ord_num
varchar(20)

not null

title_id
tid

not null

qty
smallint
not null

discount
float

not null

title_idrule

nonclust nonclust
7896 234518 TC3218 75 40.000000
7896 234518 TC7777 75 40.000000
7131 Asoap432 TC3218 50 40.000000
7131 Asoap432 TC7777 80 40.000000
5023 XS-135-DER-432-8J2 TC3218 85 40.000000
8042 91-A-7 PS3333 90 45.000000
8042 91-A-7 TC3218 40 45.000000
8042 91-A-7 PS2106 30 45.000000
8042 91-V-7 PS2106 50 45.000000
8042 55-V-7 PS2106 31 45.000000
8042 91-A-7 MC3021 69 45.000000
5023 BS-345-DSE-860-1F2 PC1035 1000 46.700000
5023 AX-532-FED-452-2Z7 BU2075 500 46.700000
5023 AX-532-FED-452-2Z7 BU1032 200 46.700000
5023 AX-532-FED-452-2Z7 BU7832 150 46.700000
5023 AX-532-FED-452-2Z7 PS7777 125 46.700000
5023 NF-123-ADS-642-9G3 TC7777 1000 46.700000
5023 NF-123-ADS-642-9G3 BU1032 1000 46.700000
5023 NF-123-ADS-642-9G3 PC1035 750 46.700000
7131 Fsoap867 BU1032 200 46.700000
7066 BA52498 BU7832 100 46.700000
7066 BA71224 PS7777 200 46.700000
7066 BA71224 PC1035 300 46.700000
7066 BA71224 TC7777 350 46.700000
5023 ZD-123-DFG-752-9G8 PS2091 1000 46.700000
7067 NB-3.142 PS2091 200 46.700000
7067 NB-3.142 PS7777 250 46.700000
7067 NB-3.142 PS3333 345 46.700000
7067 NB-3.142 BU7832 360 46.700000
5023 XS-135-DER-432-8J2 PS2091 845 46.700000
5023 XS-135-DER-432-8J2 PS7777 581 46.700000
5023 ZZ-999-ZZZ-999-0A0 PS1372 375 46.700000
7067 NB-3.142 BU1111 175 46.700000
5023 XS-135-DER-432-8J2 BU7832 885 46.700000
5023 ZD-123-DFG-752-9G8 BU7832 900 46.700000
5023 AX-532-FED-452-2Z7 TC4203 550 46.700000
7131 Fsoap867 TC4203 350 46.700000
7896 234518 TC4203 275 46.700000
7066 BA71224 TC4203 500 46.700000

C-10 The pubs2 Database

Tables in the pubs2 Database SYBASE SQL Server Release 10.0

7067 NB-3.142 TC4203 512 46.700000
7131 Fsoap867 MC3021 400 46.700000
5023 AX-532-FED-452-2Z7 PC8888 105 46.700000
5023 NF-123-ADS-642-9G3 PC8888 300 46.700000
7066 BA71224 PC8888 350 46.700000
7067 NB-3.142 PC8888 335 46.700000
7131 Asoap432 BU1111 500 46.700000
7896 234518 BU1111 340 46.700000
5023 AX-532-FED-452-2Z7 BU1111 370 46.700000
5023 ZD-123-DFG-752-9G8 PS3333 750 46.700000
8042 13-J-9 BU7832 300 51.700000
8042 13-E-7 BU2075 150 51.700000
8042 13-E-7 BU1032 300 51.700000
8042 13-E-7 PC1035 400 51.700000
8042 91-A-7 PS7777 180 51.700000
8042 13-J-9 TC4203 250 51.700000
8042 13-E-7 TC4203 226 51.700000
8042 13-E-7 MC3021 400 51.700000
8042 91-V-7 BU1111 390 51.700000
5023 AB-872-DEF-732-2Z1 MC3021 5000 50.000000
5023 NF-123-ADS-642-9G3 PC8888 2000 50.000000
5023 NF-123-ADS-642-9G3 BU2075 2000 50.000000
5023 GH-542-NAD-713-9F9 PC1035 2000 50.000000
5023 ZA-000-ASD-324-4D1 PC1035 2000 50.000000
5023 ZA-000-ASD-324-4D1 PS7777 1500 50.000000
5023 ZD-123-DFG-752-9G8 BU2075 3000 50.000000
5023 ZD-123-DFG-752-9G8 TC7777 1500 50.000000
5023 ZS-645-CAT-415-1B2 BU2075 3000 50.000000
5023 ZS-645-CAT-415-1B2 BU2075 3000 50.000000
5023 XS-135-DER-432-8J2 PS3333 2687 50.000000
5023 XS-135-DER-432-8J2 TC7777 1090 50.000000
5023 XS-135-DER-432-8J2 PC1035 2138 50.000000
5023 ZZ-999-ZZZ-999-0A0 MC2222 2032 50.000000
5023 ZZ-999-ZZZ-999-0A0 BU1111 1001 50.000000
5023 ZA-000-ASD-324-4D1 BU1111 1100 50.000000
5023 NF-123-ADS-642-9G3 BU7832 1400 50.000000
5023 BS-345-DSE-860-1F2 TC4203 2700 50.000000
5023 GH-542-NAD-713-9F9 TC4203 2500 50.000000
5023 NF-123-ADS-642-9G3 TC4203 3500 50.000000

salesdetail
stor_id
char(4)
not null

ord_num
varchar(20)

not null

title_id
tid

not null

qty
smallint
not null

discount
float

not null

title_idrule

nonclust nonclust

System Administration Guide C-11

SYBASE SQL Server Release 10.0 Tables in the pubs2 Database

5023 BS-345-DSE-860-1F2 MC3021 4500 50.000000
5023 AX-532-FED-452-2Z7 MC3021 1600 50.000000
5023 NF-123-ADS-642-9G3 MC3021 2550 50.000000
5023 ZA-000-ASD-324-4D1 MC3021 3000 50.000000
5023 ZS-645-CAT-415-1B2 MC3021 3200 50.000000
5023 BS-345-DSE-860-1F2 BU2075 2200 50.000000
5023 GH-542-NAD-713-9F9 BU1032 1500 50.000000
5023 ZZ-999-ZZZ-999-0A0 PC8888 1005 50.000000
7896 124152 BU2075 42 50.500000
7896 124152 PC1035 25 50.500000
7131 Asoap132 BU2075 35 50.500000
7067 NB-1.142 PC1035 34 50.500000
7067 NB-1.142 TC4203 53 50.500000
8042 12-F-9 BU2075 30 55.500000
8042 12-F-9 BU1032 94 55.500000
7066 BA27618 BU2075 200 57.200000
7896 124152 TC4203 350 57.200000
7066 BA27618 TC4203 230 57.200000
7066 BA27618 MC3021 200 57.200000
7131 Asoap132 MC3021 137 57.200000
7067 NB-1.142 MC3021 270 57.200000
7067 NB-1.142 BU2075 230 57.200000
7131 Asoap132 BU1032 345 57.200000
7067 NB-1.142 BU1032 136 57.200000
8042 12-F-9 TC4203 300 62.200000
8042 12-F-9 MC3021 270 62.200000
8042 12-F-9 PC1035 133 62.200000
5023 AB-123-DEF-425-1Z3 TC4203 2500 60.500000
5023 AB-123-DEF-425-1Z3 BU2075 4000 60.500000
6380 342157 BU2075 200 57.200000
6380 342157 MC3021 250 57.200000
6380 356921 PS3333 200 46.700000
6380 356921 PS7777 500 46.700000
6380 356921 TC3218 125 46.700000
6380 234518 BU2075 135 46.700000
6380 234518 BU1032 320 46.700000
6380 234518 TC4203 300 46.700000
6380 234518 MC3021 400 46.700000

salesdetail
stor_id
char(4)
not null

ord_num
varchar(20)

not null

title_id
tid

not null

qty
smallint
not null

discount
float

not null

title_idrule

nonclust nonclust

C-12 The pubs2 Database

Tables in the pubs2 Database SYBASE SQL Server Release 10.0

sales

stor_id
char(4)
not null

ord_num
varchar(20)

not null

date
datetime
not null

clust, uniq

5023 AB-123-DEF-425-1Z3 Oct 31 1985

5023 AB-872-DEF-732-2Z1 Nov 6 1985

5023 AX-532-FED-452-2Z7 Dec 1 1990

5023 BS-345-DSE-860-1F2 Dec 12 1986

5023 GH-542-NAD-713-9F9 Mar 15 1987

5023 NF-123-ADS-642-9G3 Jul 18 1987

5023 XS-135-DER-432-8J2 Mar 21 1991

5023 ZA-000-ASD-324-4D1 Jul 27 1988

5023 ZD-123-DFG-752-9G8 Mar 21 1991

5023 ZS-645-CAT-415-1B2 Mar 21 1991

5023 ZZ-999-ZZZ-999-0A0 Mar 21 1991

6380 234518 Sep 30 1987

6380 342157 Dec 13 1985

6380 356921 Feb 17 1991

7066 BA27618 Oct 12 1985

7066 BA52498 Oct 27 1987

7066 BA71224 Aug 5 1988

7067 NB-1.142 Jan 2 1987

7067 NB-3.142 Jun 13 1990

7131 Asoap132 Nov 16 1986

7131 Asoap432 Dec 20 1990

7131 Fsoap867 Sep 8 1987

7896 124152 Aug 14 1986

7896 234518 Feb 14 1991

8042 12-F-9 Jul 13 1986

8042 13-E-7 May 23 1989

8042 13-J-9 Jan 13 1988

8042 55-V-7 Mar 20 1991

8042 91-A-7 Mar 20 1991

8042 91-V-7 Mar 20 1991

System Administration Guide C-13

SYBASE SQL Server Release 10.0 Tables in the pubs2 Database

stores

stor_id
char(4)
not null

stor_name
varchar(40)

null

stor_address
varchar(40)

null

city
varchar(20)

null

state
char(2)

null

country
varchar(12)

null

postalcode
char(10)

null

payterms
varchar(12)

null

7066 Barnum’s 567 Pasadena Ave. Tustin CA USA 92789 Net 30

7067 News & Brews 577 First St. Los Gatos CA USA 96745 Net 30

7131 Doc-U-Mat: Quality
Laundry and Books

24-A Avrogado Way Remulade WA USA 98014 Net 60

8042 Bookbeat 679 Carson St. Portland OR USA 89076 Net 30

6380 Eric the Read Books 788 Catamaugus
Ave.

Seattle WA USA 98056 Net 60

7896 Fricative Bookshop 89 Madison St. Fremont CA USA 90019 Net 60

5023 Thoreau Reading
Discount Chain

20435 Walden
Expressway

Concord MA USA 01776 Net 60

discounts

discounttype
varchar(40)

not null

stor_id
char(4)

null

lowqty
smallint

null

highqty
smallint

null

discount
float

not null

Initial Customer
Volume Discount
Huge Volume Discount
Customer Discount 8042

100

1001

1000
10.5

6.7
10

5

C-14 The pubs2 Database

Tables in the pubs2 Database SYBASE SQL Server Release 10.0

roysched

title_id
tid

not null
nonclust

lorange
int
null

hirange
int
null

royalty
int
null

BU1032 0 5000 10

BU1032 5001 50000 12

PC1035 0 2000 10

PC1035 2001 3000 12

PC1035 3001 4000 14

PC1035 4001 10000 16

PC1035 10001 50000 18

BU2075 0 1000 10

BU2075 1001 3000 12

BU2075 3001 5000 14

BU2075 5001 7000 16

BU2075 7001 10000 18

BU2075 10001 12000 20

BU2075 12001 14000 22

BU2075 14001 50000 24

PS2091 0 1000 10

PS2091 1001 5000 12

PS2091 5001 10000 14

PS2091 10001 50000 16

PS2106 0 2000 10

PS2106 2001 5000 12

PS2106 5001 10000 14

PS2106 10001 50000 16

MC3021 0 1000 10

MC3021 1001 2000 12

MC3021 2001 4000 14

MC3021 4001 6000 16

MC3021 6001 8000 18

MC3021 8001 10000 20

MC3021 10001 12000 22

System Administration Guide C-15

SYBASE SQL Server Release 10.0 Tables in the pubs2 Database

MC3021 12001 50000 24

TC3218 0 2000 10

TC3218 2001 4000 12

TC3218 4001 6000 14

TC3218 6001 8000 16

TC3218 8001 10000 18

TC3218 10001 12000 20

TC3218 12001 14000 22

TC3218 14001 50000 24

PC8888 0 5000 10

PC8888 5001 10000 12

PC8888 10001 15000 14

PC8888 15001 50000 16

PS7777 0 5000 10

PS7777 5001 50000 12

PS3333 0 5000 10

PS3333 5001 10000 12

PS3333 10001 15000 14

PS3333 15001 50000 16

BU1111 0 4000 10

BU1111 4001 8000 12

BU1111 8001 10000 14

BU1111 12001 16000 16

BU1111 16001 20000 18

BU1111 20001 24000 20

BU1111 24001 28000 22

BU1111 28001 50000 24

MC2222 0 2000 10

MC2222 2001 4000 12

MC2222 4001 8000 14

roysched

title_id
tid

not null
nonclust

lorange
int
null

hirange
int
null

royalty
int
null

C-16 The pubs2 Database

Tables in the pubs2 Database SYBASE SQL Server Release 10.0

MC2222 8001 12000 16

MC2222 8001 12000 16

MC2222 12001 20000 18

MC2222 20001 50000 20

TC7777 0 5000 10

TC7777 5001 15000 12

TC7777 15001 50000 14

TC4203 0 2000 10

TC4203 2001 8000 12

TC4203 8001 16000 14

TC4203 16001 24000 16

TC4203 24001 32000 18

TC4203 32001 40000 20

TC4203 40001 50000 22

BU7832 0 5000 10

BU7832 5001 10000 12

BU7832 10001 15000 14

BU7832 15001 20000 16

BU7832 20001 25000 18

BU7832 25001 30000 20

BU7832 30001 35000 22

BU7832 35001 50000 24

PS1372 0 10000 10

PS1372 10001 20000 12

PS1372 20001 30000 14

PS1372 30001 40000 16

PS1372 40001 50000 18

roysched

title_id
tid

not null
nonclust

lorange
int
null

hirange
int
null

royalty
int
null

System Administration Guide C-17

SYBASE SQL Server Release 10.0 Tables in the pubs2 Database

blurbs

au_id
id

not null

copy
text
null

486-29-
1786

If Chastity Locksley didn’t exist, this troubled world would have created her! Not only did she master the mystic secrets
of inner strength to conquer adversity when she encountered it in life, but, after “reinventing herself”, as she says, by
writing “Emotional Security: A New Algorithm” following the devastating loss of her cat Old Algorithm, she also founded
Publish or Perish, the page-by-page, day-by-day, write-yourself-to-wellness encounter workshops franchise empire,
the better to share her inspiring discoveries with us all. Her “Net Etiquette,” a brilliant social treatise in its own right and
a fabulous pun, is the only civilized alternative to the gross etiquette often practiced on the public networks.

648-92-
1872

A chef’s chef and a raconteur’s raconteur, Reginald Blotchet-Halls calls London his second home. “Th’ palace kitchen’s
me first ‘ome, act’lly!” Blotchet-Halls’ astounding ability to delight our palates with palace delights is matched only by
his equal skill in satisfying our perpetual hunger for delicious back-stairs gossip by serving up tidbits and entrees literally
fit for a king!

998-72-
3567

Albert Ringer was born in a trunk to circus parents, but another kind of circus trunk played a more important role in his
life years later. He grew up as an itinerant wrestler and roustabout in the reknowned Ringer Brothers and Betty and
Bernie’s Circus. Once known in the literary world only as Anne Ringer’s wrestling brother, he became a writer while
recuperating from a near-fatal injury received during a charity benefit bout with a gorilla. “Slingshotting” himself from the
ring ropes, Albert flew over the gorilla’s head and would have landed head first on the concrete. He was saved from
certain death by Nana, an elephant he had befriended as a child, who caught him in her trunk. Nana held him so tightly
that three ribs cracked and he turned blue from lack of oxygen. “I was delirious. I had an out-of-body experience! My
whole life passed before me eyes. I promised myself ‘If I get through this, I’ll use my remaining time to share what I
learned out there.’ I owe it all to Nana!”

899-46-
2035

Anne Ringer ran away from the circus as a child. A university creative writing professor and her family took Anne in and
raised her as one of their own. In this warm and television-less setting she learned to appreciate the great classics of
literature. The stream of aspiring and accomplished writers that flowed constantly through the house confirmed her
repudiation of the circus family she’d been born into: “Barbarians!” The steadily growing recognition of her literary work
was, to her, vindication. When her brother’s brush with death brought them together after many years, she took
advantage of life’s crazy chance thing and broke the wall of anger that she had constructed to separate them. Together
they wrote, “Is Anger the Enemy?” an even greater blockbuster than her other collaborative work, with Michel
DeFrance, “The Gourmet Microwave.”

672-71-
3249

They asked me to write about myself and my book, so here goes: I started a restaurant called “de Gustibus” with two
of my friends. We named it that because you really can’t discuss taste. We’re very popular with young business types
because we’re young business types ourselves. Whenever we tried to go out to eat in a group we always got into these
long tiresome negotiations: “I just ate Italian,” or “I ate Greek yesterday,” or ‘‘I NEVER eat anything that’s not organic!”
Inefficient. Not what business needs today. So, it came to us that we needed a restaurant we could all go to every day
and not eat the same thing twice in a row maybe for a year! We thought, “Hey, why make people choose one kind of
restaurant over another, when what they really want is a different kind of food?” At de Gustibus you can eat Italian,
Chinese, Japanese, Greek, Russian, Tasmanian, Iranian, and on and on all at the same time. You never have to
choose. You can even mix and match! We just pooled our recipes, opened the doors, and never looked back. We’re a
big hit, what can I say? My recipes in “Sushi, Anyone?” are used at de Gustibus. They satisfy crowds for us every day.
They will work for you, too. Period!

409-56-
7008

Bennet was the classic too-busy executive. After discovering computer databases he now has the time to run several
successful businesses and sit on three major corporate boards. Bennet also donates time to community service
organizations. Miraculously, he also finds time to write and market executive-oriented in-depth computer hardware and
software reviews. “I’m hyperkinetic, so being dynamic and fast-moving is a piece of cake. But being organized isn’t easy
for me or for anyone I know. There’s just one word for that: ‘databases!’ Databases can cure you or kill you. If you get
the right one, you can be like me. If you get the wrong one, watch out. Read my book!”

C-18 The pubs2 Database

Primary and Foreign Keys in pubs2 SYBASE SQL Server Release 10.0

Primary and Foreign Keys in pubs2

Primary Keys

Table Primary Key

titles title_id

titleauthor au_id + title_id

authors au_id

publishers pub_id

roysched title_id

sales stor_id + ord_num

salesdetail stor_id + ord_num

stores stor_id

discounts discounttype + stor_id

au_pix au_id

blurbs au_id

Foreign Keys

Table Foreign Key Primary Key Table

titleauthor title_id
au_id

titles
authors

roysched title_id titles

sales title_id
stor_id

titles
stores

salesdetail title_id
stor_id, ord_num

titles
sales

titles pub_id publishers

discounts stor_id stores

au_pix au_id authors

blurbs au_id authors

System Administration Guide C-19

SYBASE SQL Server Release 10.0 Other Objects in pubs2

Other Objects in pubs2

Rules

pub_idrule

create rule pub_idrule
as @pub_id in (“1389”, “0736”, “0877”, “1622”,
“1756”)
or @pub_id like “99[0-9][0-9]”

title_idrule

create rule title_idrule
as
@title_id like “BU[0-9][0-9][0-9][0-9]” or
@title_id like “[MT]C[0-9][0-9][0-9][0-9]” or
@title_id like “P[SC][0-9][0-9][0-9][0-9]” or
@title_id like “[A-Z][A-Z]xxxx” or
@title_id like “[A-Z][A-Z]yyyy”
/*valid values: BU, MC, TC, PS, PC + 4 digits or
**any two uppercase letters followed by x’s or y’s
*/

Defaults

typedflt

create default typedflt as “UNDECIDED”

datedflt

create default datedflt as getdate()

phonedflt

create default phonedflt as “UNKNOWN”

View

create view titleview
as
select title, au_ord, au_lname,
price, total_sales, pub_id
from authors, titles, titleauthor
where authors.au_id = titleauthor.au_id
and titles.title_id = titleauthor.title_id

C-20 The pubs2 Database

Diagram of the pubs2 Database SYBASE SQL Server Release 10.0

Diagram of the pubs2 Database

BLURBS
au_id

copy

TITLEAUTHOR
au_id

title_id

au_ord

royaltyper

PUBLISHERS
pub_id

pub_name

city

state

TITLES
title_id

title

type

pub_id

price

advance

total_sales

notes

pubdate

contract

AU_PIX
au_id

pic

format_type

bytesize

pixwidth_hor

pixwidth_vert

STORES
stor_id

stor_name

stor_address

city

state

country

postalcode

payterms

DISCOUNTS
discounttype

stor_id

lowqty

highqty

discount

ROYSCHED
title_id

lorange

hirange

royalty

SALES
stor_id

ord_num

date

SALESDETAIL
stor_id

ord_num

title_id

qty

discount

AUTHORS
au_id

au_lname

au_fname

phone

address

city

state

country

postalcode

stor_id stor_id

1 1

N title_id

1 title_id

N stor_id

1 stor_id
N stor_id

1 stor_id

N au_id

1 au_id

1 au_id

1 au_id

1 au_id

1 au_id

stor_idstor_id
ord_numord_num

N1

pub_id pub_id

N 1

title_id title_id

N 1

title_id title_id

1 N

System Administration Guide D-1

allocation unit
An allocation unit is a logical unit of SQL Server storage equal to 256 2Kb data pages,
or 1/2 megabyte. The disk init command initializes a new database file for SQL
Server and divides it into 1/2 megabyte pieces called allocation units. On Stratus,
allocation units are 256 4Kb pages, or 1 megabyte.

automatic recovery
A process that runs every time SQL Server is stopped and restarted. The process
ensures that all transactions which have completed before the server went down are
brought forward and all incomplete transactions are rolled back.

backup
A copy of a database or transaction log, used to recover from a media failure.

batch
One or more Transact-SQL statements terminated by an end-of-batch signal, which
submits them to the SQL Server for processing. The Report Workbench and other
client software supply end-of-batch signals to SQL batches automatically.

built-in functions
A wide variety of functions that take one or more parameters and return results. The
built-in functions include mathematical functions, system functions, string
functions, text functions, date functions, and a type conversion function.

bulk copy
The utility for copying data in and out of databases, called bcp.

character set
A set of specific (usually standardized) characters with an encoding scheme that
uniquely defines each character. ASCII and ISO 8859-1 (Latin 1) are two common
character sets.

character set conversion
Changing the encoding scheme of a set of characters on the way into or out of SQL
Server. Conversion is used when SQL Server and a client communicating with it use
different character sets. For example, if SQL Server uses ISO 8859-1 and a client uses
Code Page 850, character set conversion must be turned on so that both server and
client interpret the data passing back and forth in the same way.

D. GlossaryD

D-2 Glossary

 SYBASE SQL Server Release 10.0

checkpoint
The point at which all data pages that have been changed are guaranteed to have
been written to the database device.

clustered index
An index in which the physical order and the logical (indexed) order is the same. The
leaf level of a clustered index represents the data pages themselves.

code set
See character set.

collating sequence
See sort order.

command
An instruction that specifies an operation to be performed by the computer. Each
command or SQL statement begins with a keyword, such as insert, that names the
basic operation performed. Many SQL commands have one or more keyword
phrases, or clauses, that tailor the command to meet a particular need.

command permissions
Permissions that apply to commands. See also object permissions.

command terminator
A command terminator is the end-of-batch signal that sends the batch to SQL Server
for processing.

context-sensitive protection
Context-sensitive protection provides certain permissions or privileges depending
on the identity of the user. This type of protection can be provided by SQL Server
using a view and the user_id built-in function.

conversion
See character set conversion.

data definition
The process of setting up databases and creating database objects such as tables,
indexes, rules, defaults, constraints, procedures, triggers, and views.

data dictionary
1. In SQL Server, the system tables that contain descriptions of the database objects
and how they are structured.

2. In SQL Toolset, a tool for inspecting database objects.

System Administration Guide D-3

SYBASE SQL Server Release 10.0

data modification
Adding, deleting, or changing information in the database with the insert, delete, and
update commands.

database
A set of related data tables and other database objects that are organized and
presented to serve a specific purpose.

database device
A device dedicated to the storage of the objects that make up databases. It can be any
piece of disk or a file in the file system that is used to store databases and database
objects.

database object
A database object is one of the components of a database: table, view, index,
procedure, trigger, column, default, constraint or rule.

Database Owner
The user who creates a database becomes the Database Owner. A Database Owner
has control over all the database objects in that database. The login name for the
Database Owner is “dbo”.

datatype
Specifies what kind of information each column will hold, and how the data will be
stored. Datatypes include char, int, money, and so on. Users can construct their own
datatypes in SQL Server based on the SQL Server system datatypes. User-defined
datatypes are not supported in SQL Toolset.

date function
A function that displays information about dates and times, or manipulates date or
time values. The five date functions are getdate, datename, datepart, datediff and dateadd.

dbo
In a user’s own database, SQL Server recognizes the user as dbo. A database owner
logs into SQL Server using his or her assigned login name and password.

deadlock
A situation which arises when two users, each having a lock on one piece of data,
attempt to acquire a lock on the other’s piece of data. The SQL Server detects
deadlocks, and kills one user’s process.

default
The option chosen by the system when no other option is specified.

D-4 Glossary

 SYBASE SQL Server Release 10.0

default database
The database that a user gets by default when he or she logs in.

default language
1. The default language of a user is the language that displays that user’s prompts
and messages. It can be set with sp_modifylogin or the language option of the set
command.

2. The SQL Server default language is the language that is used to display prompts
and messages for all users unless a user chooses a different language.

demand lock
A demand lock prevents any more shared locks from being set on a data resource
(table or data page). Any new shared lock request has to wait for the demand lock
request to finish.

dirty read
“Dirty reads” occur when one transaction modifies a row, and then a second
transaction reads that row before the first transaction commits the change. If the
first transaction rolls back the change, the information read by the second
transaction becomes invalid.

disk allocation pieces
Disk allocation pieces are the groups of allocation units from which SQL Server
constructs a new database file. The minimum size for a disk allocation piece is one
allocation unit, or 256 2Kb pages (256 4Kb pages on Stratus).

disk initialization
The process of preparing a database partition, foreign device or file for SQL Server
use. Once the device is initialized, it can be used for storing databases and database
objects. The command used to initialize a database device is disk init.

disk mirror
A duplicate of a SQL Server database device. All writes to the device being mirrored
are copied to a separate physical device, making the second device an exact copy of
the device being mirrored. If one of the devices fails, the other contains an up-to-date
copy of all transactions. The command disk mirror starts the disk mirroring process.

display precision
The number of significant binary digits offered by the default display format for real
and float values. Internally, real and float values are stored with a precision less than
or equal to that of the platform-specific datatypes on which they are built. For
display purposes, Sybase reals have 9 digits of precision; Sybase floats, 17.

System Administration Guide D-5

SYBASE SQL Server Release 10.0

dump striping
Interleaving of dump data across several dump volumes.

dump volume
A single tape, partition or file used for a database or transaction dump. A dump can
span many volumes, or many dumps can be made to a single tape volume.

dynamic dump
A dump made while the database is active.

engine
A process running a SQL Server that communicates with other server processes
using shared memory. An engine can be thought of as one CPU’s worth of
processing power. It does not represent a particular CPU on a machine. Also referred
to as “server engine.”A SQL Server running on a uniprocessor machine will always
have one engine, engine 0. A SQL Server running on a multiprocessor machine can
have one or more engines. The maximum number of engines running on SQL Server
can be reconfigured using the max online engines configuration variable.

error message
A message that SQL Server issues, usually to the user’s terminal, when it detects an
error condition.

error state number
The number attached to an SQL Server error message that allows unique
identification of the line of SQL Server code at which the error was raised.

exclusive locks
Locks which prevent any other transaction from acquiring a lock until the original
lock is released at the end of a transaction, always applied for update (insert, update,
delete) operations.

expression
1. In SQL Server, returns values. An expression can be a computation, column data,
a built-in function, or a subquery.

2. A basic unit of the APT-SQL language, composed of operators and other
expressions.

format file
A file created while using bcp to copy data out from a table in a SQL Server database
to an operating system file. The format file contains information on how the data
being copied out is formatted and can be used to copy the data back into a SQL
Server table or to perform additional copy outs.

D-6 Glossary

 SYBASE SQL Server Release 10.0

free-space threshold
A user-specified threshold that specifies the amount of space on a segment, and the
action to be taken when the amount of space available on that segment is less than
the specified space.

functions
See built-in functions.

global variable
1. In APT-SQL, a variable declared with global variable. The value of a global variable
is available to any APT-SQL routine that declares it.

2. In SQL Server, global variables are system-defined variables that SQL Server
updates on an ongoing basis. For example, @@error contains the last error number
generated by the system.

guest
If the user name “guest” exists in the sysusers table of a database, any user with a
valid SQL Server login can use that database, with limited privileges.

hexadecimal string
A hexadecimal-encoded binary string that begins with the prefix 0x and can include
the digits 0 through 9 and the upper- and lowercase letters A through F. The
interpretation of hexadecimal strings is platform specific. For some systems, the first
byte after the prefix is the most significant; for others, the last byte is most significant.
For example, the string 0x0100 is interpreted as 1 on some systems and as 256 on
others.

identifier
1. A string of characters used to identify a database object, such as a table name or
column name.

2. In APT-SQL, any string of characters which identifies an object in a routine.
Includes, but is not limited to: variables, fields, groups, menu actions, forms,
sqlrows, channels, and routine names.

initialization
See disk initialization.

int
A signed 32 bit integer value.

intent lock
An intent lock indicates the intention to acquire a shared or exclusive lock on a data
page.

System Administration Guide D-7

SYBASE SQL Server Release 10.0

isolation level
Also called “locking level,” “isolation level” specifies the kinds of actions which are
not permitted while the current transaction executes. The ANSI standard defines 3
levels of isolation for SQL transactions. Level 1 prevents dirty reads, and level 2 also
prevents non-repeatable reads. Level 3 prevents both types of reads and phantoms;
it is equivalent to doing all selects with holdlock. The user controls the isolation level
with the set option transaction isolation level; the default is isolation level 1.

kernel
A module within SQL Server that acts as the interface between SQL Server and the
operating system.

keyword
A word or phrase that is reserved for exclusive use by Transact-SQL. Also known as
reserved word.

last-chance threshold
A default threshold in SQL Server that suspends or kills user processes if the
transaction log has run out of room. This threshold leaves just enough space for the
de-allocation records for the pages cleared by the log dump itself. Threshold events
calls a user-defined procedure, the default name is sp_thresholdaction. This procedure is
not supplied by Sybase, it must be written by the System Administrator.

leaf level
The bottom level of a clustered or non-clustered index. In a clustered index the leaf
level contains the actual data pages of the table.

livelock
A request for an exclusive lock that is repeatedly denied because a series of
overlapping shared locks keeps interfering. The SQL Server detects the situation
after four denials, and refuses further shared locks.

locking
The process of restricting access to resources in a multi-user environment to maintain
security and prevent concurrent access problems. SQL Server automatically applies
locks to tables or pages.

locking level
See isolation level.

login
The name a user uses to log in to SQL Server. A login is valid if SQL Server has an
entry for that user in the system table syslogins.

D-8 Glossary

 SYBASE SQL Server Release 10.0

Master Database
Controls the user databases and the operation of SQL Server as a whole. Known as
master, it keeps track of such things as user accounts, ongoing processes, and
system error messages.

message number
The number that uniquely identifies an error message.

mirror
See disk mirror.

model database
A template for new user databases. The buildmaster program and the installmodel script
create model when SQL Server is installed. Each time the create database command is
issued, SQL Server makes a copy of model and extends it to the size requested, if
necessary.

multibyte character set
A character set that includes characters encoded using more than one byte. EUC JIS
and Shift-JIS are examples of character sets that include several types of characters
represented by multiple bytes in a Japanese language environment.

non-clustered index
An index that stores key values and pointers to data. The leaf level points to data
pages rather than containing the data itself. Compare to clustered index.

non-repeatable read
“Non-repeatable reads” occur when one transaction reads a row and then a second
transaction modifies that row. If the second transaction commits its change,
subsequent reads by the first transaction yield different results than the original
read.

normalization rules
The standard rules of database design in a relational database management system.

null
Having no explicitly assigned value. NULL is not equivalent to zero, or to blank. A
value of NULL is not considered to be greater than, less than, or equivalent to any
other value, including another value of NULL.

object permissions
Permissions that regulate the use of certain commands (data modification
commands, plus select, truncate table and execute) to specific tables, views, columns or
procedures. See also command permissions.

System Administration Guide D-9

SYBASE SQL Server Release 10.0

objects
See database objects.

operating system
A group of programs that translates your commands to the computer, helping you
perform such tasks as creating files, running programs, and printing documents.

parameter
1. An argument to a stored procedure.

2. A value passed between routines and/or forms.

permission
The authority to perform certain actions on certain database objects or to run certain
commands.

phantoms
“Phantoms” occur when one transaction reads a set of rows that satisfy a search
condition, and then a second transaction modifies the data (through an insert, delete,
update, and so on). If the first transaction repeats the read with the same search
conditions, it obtains a different set of rows.

precision
A positive integer that determines the maximum number of digits that can be
represented in a decimal, numeric, or float column.

privilege
See permission.

query
1. A request for the retrieval of data with a select statement.

2. Any SQL statement that manipulates data.

recovery
The process of rebuilding one or more databases from database dumps and log
dumps. See also automatic recovery.

remote procedure calls
1. A stored procedure executed on a different SQL Server from the server the user is
logged into.

2. In APT-SQL, remote procedure calls are stored procedures executed with the
remote statement. Stored procedures executed with remote can be on a remote server,
or on the local server.

D-10 Glossary

 SYBASE SQL Server Release 10.0

sa
See System Administrator.

scale
A nonnegative integer that determines the maximum number of digits that can be
represented to the right of the decimal point. The scale of a datatype cannot be
greater than its precision.

schema
A “schema” is a persistent object in the database. It consists of the collection of
objects associated with a particular schema name and user authorization identifier.
The objects are tables, views, domains, constraints, assertions, privileges and so on.
A schema is created by a create schema statement.

segment
A named subset of database devices available to a particular database. It is a label
that points to one or more database devices. Segments can be used to control the
placement of tables and indexes on specific database devices.

server engine
See engine.

server user ID
The ID number by which a user is known to SQL Server.

severity level number
The severity of an error condition: errors with severity levels of 19 and above are fatal
errors.

shared lock
A lock created by non-update (“read”) operations. Other users may read the data
concurrently, but no transaction can acquire an exclusive lock on the data until all
the shared locks have been released.

sort order
Used by SQL Server to determine the order in which character data is sorted. Also
called collating sequence.

SQL Server
The server in Sybase’s “Client-Server” architecture. SQL Server manages multiple
databases and multiple users, keeps track of the actual location of data on disks,
maintains mapping of logical data description to physical data storage, and
maintains data and procedure caches in memory.

System Administration Guide D-11

SYBASE SQL Server Release 10.0

statement
A statement begins with a keyword that names the basic operation or command to
be performed.

stored procedure
A collection of SQL statements and optional control-of-flow statements stored under
a name. SQL Server-supplied stored procedures are called system procedures.

System Administrator
A user in charge of SQL Server system administration, including creating user
accounts, assigning permissions, and creating new databases. At installation time,
the System Administrator’s login name is sa. The sa user can assign the System
Administrator role to other logins, providing greater accountability.

system databases
The four databases on a newly installed SQL Server: the Master Database (master),
which controls user databases and the operation of the SQL Server; the Temporary
Database (tempdb), used for temporary tables; the System Procedures Database
(sybsystemprocs) and the Model Database (model) which is used as a template to
create new user databases.

system function
A function that returns special information from the database, particularly from the
system tables.

system procedures
Stored procedures that SQL Server supplies for use in system administration. These
procedures are provided as shortcuts for retrieving information from the system
tables, or mechanisms for accomplishing database administration and other tasks
that involve updating system tables.

system table
One of the data dictionary tables. The system tables keep track of information about
the SQL Server as a whole and about each user database. The Master Database
contains some system tables that are not in user databases.

temporary database
The temporary database in SQL Server, tempdb, that provides a storage area for
temporary tables and other temporary working storage needs (for example,
intermediate results of group by and order by).

transaction
A mechanism for ensuring that a set of actions is treated as a single unit of work.

D-12 Glossary

 SYBASE SQL Server Release 10.0

transaction log
A system table (syslogs) in which all changes to the database are recorded.

trigger
A special form of stored procedure that goes into effect when a user gives a change
command such as insert, delete, or update to a specified table or column. Triggers are
often used to enforce referential integrity.

user authorization identifier
“User authorization identifiers” are associated with each schema. All the objects are
said to be owned by or to have been created by the associated user authorization
identifier for the schema.

user id
The ID number by which a user is known in a specific database. Distinct from server
user ID.

view
An alternative way of looking at the data in one or more tables. Usually created as a
subset of columns from one or more tables.

System Administration Guide 1

Index

The index is divided into three sections:

• Symbols

Indexes each of the symbols used in SYBASE SQL Server
documentation.

• Numbers

Indexes entries which begin numerically.

• Subjects

Indexes subjects alphabetically.

Page numbers in bold are primary references.

Symbols
" " (quotation marks)

enclosing passwords in 4-14
enclosing punctuation 4-4
enclosing values in 1-5, 3-47, 4-3

% (percent sign)
in error messages 11-3

* (asterisk). See Asterisks (*)
, (comma)

in SQL statements xxxii
... (ellipsis) in SQL statements xxxiii
?? (question marks)

for suspect characters 18-4, 18-7
[] (square brackets)

in SQL statements xxxiii
{} (curly braces) in SQL statements xxxiii

Numerics
7-bit ASCII character data, character set

conversion for 17-4, 18-1, 18-5

A
abort tran on log full database option 10-3,

12-10
Access

remote 7-15
restricting guest users 4-8

Access protection. See Permissions
Accounting

chargeback 4-22 to 4-24
Adding

database devices 3-7 to 3-10, 12-29
date strings 17-11 to 17-12
dump devices 7-20
guest users 4-7
logins 4-2 to 4-5
new users to databases 4-1 to 4-9
remote logins 4-9, 15-6 to 15-8
remote servers 15-2 to 15-13
space to a database 3-30 to 3-32
thresholds 10-4 to 10-11
users to a database 4-1 to 4-9, 12-29

additional netmem configuration variable
12-38, 12-40

Affinity, process 14-1, 14-3

2 Index

SYBASE SQL Server Release 10.0

Aggregate functions
not used on virtual tables B-3

Aliases
See also Logins; Users
creating 4-16
device names 7-19
dropping 4-18
language name B-31
server 15-3
sysalternates table B-5
transfer to new Database Owner 3-30,

5-9
all keyword

grant 5-12
revoke 5-12, 5-13

All processes, errors affecting 11-9 to
11-11

Allocation units 6-2
See also Size; Space allocation
on master device 9-7
page 3-7, 3-33, 6-2, 6-12
recovery and 8-36
sysusages table B-57

allow nulls by default database option 12-10
allow updates configuration variable 1-6,

12-26 to 12-27, B-3
with override clause 1-6, 12-24, 12-26

alter database command 3-30 to 3-32, 8-38
See also create database command
backing up master after 7-23
for load option 3-31
omitting database device and 3-11,

3-12
size of database and 3-23
system tables and 3-6, 3-43
with override option 3-31

Alternate identity. See Aliases
Alternate languages. See Languages,

alternate
ansi_permissions option, set 12-3
ansinull option, set 12-2
Application design 12-28

for SMP Servers 14-7
APT-SQL keywords list A-3

Architecture, Server SMP 14-1 to 14-3
arithabort option, set 12-7

arith_overflow and 12-3
arithignore option, set 12-7

arith_overflow and 12-3
ASCII characters

character set conversion and 17-4,
18-1, 18-5

Asterisks (*)
select and 5-22

Asynchronous I/O and disk mirroring
3-17

at option 8-8
dump striping and 8-17

@@char_convert global variable 12-16
@@client_csid global variable 12-17
@@client_csname global variable 12-16
@@connections global variable 12-16
@@cpu_busy global variable 12-16
@@error global variable 12-17
@@identity global variable 12-17
@@idle global variable 12-16
@@io_busy global variable 12-16
@@isolation global variable 12-17
@@langid global variable 12-17
@@language global variable 12-17
@@max_connections global variable

12-17, 12-21, 12-27
@@maxcharlen global variable 12-17
@@ncharsize global variable 12-17
@@nestlevel global variable 12-17
@@pack_received global variable 12-16
@@pack_sent global variable 12-16
@@packet_errors global variable 12-16
@@procid global variable 12-17
@@rowcount global variable 12-5, 12-17
@@servername global variable 12-17, 15-3
@@spid global variable 12-17
@@sqlstatus global variable 12-17
@@textsize global variable 12-7, 12-18
@@thresh_hysteresis global variable 10-2,

10-11, 12-18
@@timeticks global variable 12-18
@@total_errors global variable 12-16

System Administration Guide 3

SYBASE SQL Server Release 10.0

@@total_read global variable 12-16
@@total_write global variable 12-16
@@tranchained global variable 12-18
@@trancount global variable 12-18
@@transtate global variable 12-18
@@version global variable 12-18
au_pix table, pubs2 database C-7
audit queue size configuration variable

12-37, 16-2
Audit trail 1-12

adding comments 16-15 to 16-16
aliasing and 4-16
backtrace of error messages 11-4, 11-6
reading 16-18
sysaudits table 16-16 to 16-19

Auditing 16-1 to 16-22
adhoc records option 16-6
archiving audit data 16-19
devices for 16-3
enabling and disabling 16-4, 16-5
errors 16-6
global options 16-4
indirect references to tables and views

16-11
installing 16-2
logins 16-5
logouts 16-5
privileged commands, use of 16-5
queue, size of 12-37, 16-2
recovering from full device 16-21
remote procedure calls 16-5
role toggling 16-5
server boots 16-5
stored procedures 16-13 to 16-14
sybsecurity database 1-12, 16-1
sysauditoptions table B-6
sysaudits table 16-16 to 16-19, B-8
system procedures for 16-2
table access 16-10 to 16-13
threshold management and 16-21
triggers 16-13 to 16-14
turning on and off 16-4
users 16-7 to 16-8
view access 16-10 to 16-13

Author blurbs table, pubs2 database C-17
authors table, pubs2 database C-2
auto identity database option 12-10
Automatic operations

checkpoints 7-4
primary and secondary databases

12-11
recovery 7-5 to 7-6

B
Backtracing errors. See Error logs
Backup commands. See dump database;

dump transaction
Backup devices. See Dump devices
Backup Server 7-12 to 7-15

checking with showserver 9-12
device names and 7-19
dump striping and 8-16
error log 11-11
error messages 11-12
interfaces file and 7-15
location of 7-15
messages 8-22 to 8-23
multi-file media and tape expiration

8-20
network name 9-11
reading copied dumps 7-18
remote 8-8
remote access 7-17
requirements for dumps 7-15
shutting down 11-16
starting 7-17
sysservers table 7-15
tape retention configuration variable

12-34
volume handling messages 8-30 to

8-34
Backups 7-1 to 7-25, 9-1 to 9-20

changes to user IDs 7-23
multiple databases to a single volume

8-22
planning 7-25
preventing tape overwrites 7-18

4 Index

SYBASE SQL Server Release 10.0

remote 7-12
Base tables. See Tables
bcp (bulk copy utility)

character set conversion and 18-5, 18-7
dump database command and 7-21
fast version 12-12
select into/bulkcopy option and 12-12

Binary expressions xxxiv
Binary sort order 6-8, 17-4, 17-7
Blocking process 13-19, B-43
Blocks, server engine task 14-3 to 14-4
blocksize option 8-9 to 8-11
blurbs table, pubs2 database C-17
Buffer cache 12-29
buildmaster utility command 9-4, 14-5
Bytes

character 18-3

C
Caches

See also Storage management
data and procedure 6-15, 11-11, 12-29,

12-31
languages in 12-36

Calls, remote procedure 12-27, 15-1 to
15-13

timeouts 15-5
capacity option 8-9 to 8-11
Capacity. See Memory
cascade option, revoke 5-14
Case sensitivity

in SQL xxxii
chained option, set 12-4
Chains

ownership 5-24
text 3-49

Changing
See also Updating
to another identity 5-8
character sets 6-14, 17-3 to 17-11
configuration variables 12-20 to 12-23,

15-11
data while unlogged 12-12

database options 12-9 to 12-14
Database Owners 3-29, 5-9
default database 4-14
groups 4-15
hardware 3-18
languages 17-3 to 17-11
master database 7-22
option settings for master 12-9
passwords 4-13, 15-10
query processing options 12-1 to 12-9
server logins 4-14
sort orders 6-8, 6-14, 17-3 to 17-11
sort orders, recovery after 17-7
space allocation once assigned 3-23,

3-30
syslogs table, dangers of 1-4, B-3
system messages, dangers of 11-6
system tables 1-6, 9-6, 12-26, B-3
thresholds 10-6
user information 4-12 to 4-15

@@char_convert global variable 12-16
char_convert option, set 12-4, 12-8, 18-4,

18-6 to 18-7
Character set conversion

between client and file system 18-7
between client and server 18-1 to 18-7
between client and terminal 18-7
characters not converted 17-4, 18-3
chart 18-2
error handling 18-4, 18-6
errors and problems 18-3 to 18-4
from non-character data 17-4
passwords and 18-5
paths supported 18-1 to 18-3
set char_convert 18-4, 18-6 to 18-7
setting up for 18-4 to 18-7
sort order changes and 17-4

Character sets
changing 6-14, 17-3 to 17-11
client and server 18-2
database dumps and 8-25
definition files 17-2
ID number 12-36
iso_1 18-1

System Administration Guide 5

SYBASE SQL Server Release 10.0

multibyte 6-14, 17-8, 17-10, 17-11
null 18-6
syscharsets system table B-11
translation files, terminal-specific

17-2, 18-8
Characters

which cannot be converted 18-3
Character-type expressions xxxiv
Chargeback accounting 4-22 to 4-24,

12-36
charset.loc localization file 17-2
charsets directory 17-1
Check constraints

sysconstraints table B-18
system tables entries for B-40 to B-41,

B-42
checkalloc option, dbcc 6-4, 6-10, 6-15
checkcatalog option, dbcc 3-41, 6-9, 6-16
checkdb option, dbcc 6-9, 6-15
checkpoint command 7-5

See also Checkpoint process
setting database options and 12-13
trunc log on chkpt option and 12-12

Checkpoint process 7-3 to 7-5, 12-24
clearing transaction logs 7-4
no chkpt on recovery database option

12-11
recovery interval variable and 12-24 to

12-26
transaction log and 7-5
trunc log on chkpt database option 7-4,

12-12, 12-13, 12-25
checktable option, dbcc 3-26, 3-29, 6-7, 6-15,

17-9
fast version 6-14

Clearing
usage statistics 4-23

Client (DB-Library) application
messages 11-6

Client character set. See Character set
conversion

@@client_csid global variable 12-17
@@client_csname global variable 12-16
close on endtran option, set 12-4

Clustered indexes
fillfactor and 12-33
pages allocated to B-26
on segments 3-38, 3-40, 3-48, 12-45

cntrltype option
disk init 3-10

Coding. See Character set conversion
Columns

permissions on 5-13, 5-19
reserved B-3
unqualified names of 11-8
variable-length B-13

Comma (,)
in SQL statements xxxii

Command permissions 5-2 to 5-4, 5-11
See also Permissions

Comments
adding to audit trail 16-15 to 16-16

Common keys
syskeys table B-29

common.loc file 17-1
Comparison

datatype problems 11-8
null-valued operands 12-2, 12-8

Concurrency, locking 13-5, 13-21
Concurrency, SMP environment 14-7
Configuration structure B-19

SMP environment 14-4 to 14-6
Configuration variables

changing 12-20 to 12-23, 15-11
chargeback accounting 4-23
default settings of 12-19, 12-24, 12-29,

15-11
described 12-24 to 12-44, 15-11 to 15-13
listing values of 12-20
for remote logins 12-35, 15-11 to 15-13
resetting 12-19 to 12-44
system tables values B-16, B-19

Conflicting permissions 5-17 to 5-18
See also Permissions

Connections
See also Remote servers
maximum user number 12-17, 12-27

@@connections global variable 12-16

6 Index

SYBASE SQL Server Release 10.0

Consistency
checking database 7-6
data 13-1

Constants xxxiv
Constraints

sysconstraints table B-18
sysreferences table B-47
system tables entries for B-40 to B-41

Context-sensitive protection 5-22
contiguous option (OpenVMS)

disk init 3-10
Conventions

Transact-SQL syntax xxxi to xxxiv
used in manuals xxxi to xxxiv

Converting character sets. See Character
set conversion

Copying
dump files and disks 7-18

Copying selected data. See insert
command; select command

cpu flush configuration variable 4-23,
12-36

CPU usage
monitoring 14-6
number of engines and 14-5 to 14-6
per user 4-22
symmetric processing and 14-2 to 14-3

@@cpu_busy global variable 12-16
create database command 3-20 to 3-27

allocating storage space with 3-23
backing up master after 7-23
database size configuration variable and

3-23, 12-33
for load option and 3-27, 3-31
log on option 3-3, 3-23, 3-25
model database and 1-9
omitting database device and 3-11,

3-12
omitting log on option 3-27
omitting on keyword 3-25
on keyword 3-21
permission 3-22, 5-5
size parameter 3-23
SMP environment and 14-6

system tables and 1-2, 3-43
with override option 3-28, 3-31

create index command 3-2, 3-6, 3-38
database dumping and 7-21
fillfactor configuration variable and

12-32 to 12-33, 14-7
moving tables with 3-49

create procedure command 1-6
create table command 3-2, 3-38

clustered indexes and 3-49
Creating

aliases 4-16
database objects 3-2
database objects on segments 3-38
databases 3-20, 3-27, 5-5
groups 4-5 to 4-6
guest users 4-7
logical names 7-18
master database 3-4
model database 3-4
segments 3-4, 3-37
stored procedures 1-6
system procedures 1-6
system tables 1-2
tempdb database 3-4
thresholds 10-4 to 10-11
user-defined error messages 11-6

cs_connection command, user connections
and 12-28

Curly braces ({}) in SQL statements
xxxiii

Current database 11-7
Current log. See Transaction logs
Current usage statistics 4-22
cursor rows option, set 12-4
Cursors

close on endtran option 13-13
locking 13-12 to 13-14

D
d_master 1-7, 3-4, 3-11

See also Master device

System Administration Guide 7

SYBASE SQL Server Release 10.0

Damage symptoms, master database. See
master database

Data
See also Permissions
cache 11-11, 12-29, 12-31
losing unlogged 12-12
packets 15-13

Data consistency 13-1
Data dictionary. See System tables
Data pages, data cache and 12-32
Data segments, thresholds and 10-10
Data Workbench messages 11-6
Database administration 1-1 to 1-2
Database device space. See Segments;

Space allocation
Database devices 3-7

See also Disk mirroring; Dump
devices; Master device

adding 3-7 to 3-10
assigning databases to 3-23, 3-32, 8-38
default 1-7, 3-12 to 3-13, 3-25
dropping 3-12
fragments 3-6
information about 3-11, 3-50
initializing 3-7 to 3-10
names of 3-4, 3-9
number of Server usable 12-34
numbering 3-9, 3-22
performance tuning 12-44 to 12-46
placing objects on 3-3, 3-38
recovery and 9-13
in SMP sites 14-6
sysdevices table B-23
system table entries for B-23
unmirroring and 3-18

Database object owners 2-4 to 2-5
See also Database Owners
permissions 2-4, 5-1 to 5-4, 5-9
status not transferable 4-11
tasks of 2-4

Database objects 2-4
See also individual object names
access to 2-4
assigning to devices 3-3, 3-38, 12-44

auditing 16-10
controlling user creation of 1-8, 7-22
creating 1-8, 3-2, 5-9
dependencies of B-22
dependent 5-24
dropping 3-32, 5-9, 5-10
dropping segments and 3-41
dropping users who own 4-11
errors affecting 11-10
finding 11-7
maximum number open 12-31
names of 2-4, 11-7
ownership 2-4, 4-11, 5-9
performance tuning and 12-44
permissions on 5-3, 5-9, 5-12
placement on segments 3-40, 3-49,

8-39, 12-44
pubs2 database C-19
space used by 3-52
sysobjects table B-40 to B-41
triggers on 5-28

Database options 12-9 to 12-14
See also Individual option names
abort tran on log full 10-3
changing and setting 12-13 to 12-14
displaying 12-9, 12-13
meaning of 12-10 to 12-13

Database Owners 2-3
See also Database object owners; Per-

missions
changing 3-29, 5-9
error responsibilities of 11-7, 11-9
login name 1-2, 2-3
name inside database 4-11, 4-17
objects not transferred between 4-11
password forgotten by 5-6
permissions granted by 5-12
permissions of 2-4, 5-1 to 5-4, 5-6
setuser command and 5-8 to 5-9
several users as same 4-16
tasks of 2-4

Database performance. See Performance
Database recovery. See Recovery
Database segments. See Segments

8 Index

SYBASE SQL Server Release 10.0

database size configuration variable 3-23,
12-33

See also Space allocation
Databases

See also Database objects; tempdb data-
base; User databases

adding users 4-6 to 4-9
assigning to database devices 3-23
auditing 16-8 to 16-10
backing up 1-9, 1-10, 6-17
backup/log interactions and 7-5
checkdb option (dbcc) 6-9, 6-15
creating 3-20 to 3-27, 5-5
default 1-8, 4-3, 4-14
default size 3-23, 12-33
default storage for 1-7, 3-12 to 3-13
dropping 3-32, 6-14, 8-37
dropping users from 4-10 to 4-11
dumping 1-9, 6-17, 7-6
errors affecting 11-10
increasing size of 3-30
information on storage space used

3-51
integrity concerns 6-1 to 6-18, 11-10
locking during recovery 7-8
maintenance of 6-1 to 6-18
monitoring space used by 3-51
moving to different machines 3-27
new 1-9
number of open 12-30
options 12-9 to 12-14
running out of space in 8-29
sequence numbers 12-11
single-user mode during recovery 7-8
size 1-9, 3-23, 12-33
storage information 3-33
system 1-7 to 1-13
system tables entries for B-20
users information 4-20

Datatypes
hierarchy of B-55
lists of B-55
pubs2 database C-20
system B-55

systypes table B-55 to B-56
Date and time file, local 17-1
Date functions 12-7
Date parts

order of 12-4
datefirst option, set 12-4
dateformat option, set 12-4
Dates

entry formats 12-4
format in error messages 11-5

Day values
syslanguages table B-31

dbcc (Database Consistency Checker) 6-1
to 6-19

commands 6-7 to 6-14
commands compared 6-15
database damage and 6-1, 11-7, 11-10
database maintenance and 6-1 to 6-18,

8-35
output of 6-18 to 6-19
when to use 6-15 to 6-18, 11-10

dbcc command
backups and 7-6

dbids column, sysusages table 3-33
DB-Library programs

client character set and 18-4
user connections and 12-28

dbo use only database option 12-10
“dbo” user name 1-2, 2-3
dbprocess command, user connections and

12-28
dbrepair option, dbcc 6-14, 8-37

drop database and 6-14
ddl in tran database option 12-11
Deadlocks 11-8, 13-19 to 13-21

avoiding 13-20
detection 13-20
lock size and 13-6

default character set id configuration
variable 12-36

Default database devices 3-25
default language configuration variable

12-22, 12-35

System Administration Guide 9

SYBASE SQL Server Release 10.0

default network packet size configuration
variable 12-38

default segment 3-4, 3-36
default sortorder id number 12-35
defaulton | defaultoff option, sp_diskdefault

3-13
Defaults

See also Database objects
character set ID number 12-36
configuration variables 12-19, 12-24,

12-29, 15-11
database device 1-7, 3-12 to 3-13
database options 12-9 to 12-13
database size 3-23, 12-33
databases 1-8, 4-3, 4-14
language 4-3, 12-7, 12-22, 12-35
permissions 1-10, 5-2 to 5-4
pubs2 database C-19
sort order 12-35
system databases at installation 3-4
system tables entries for B-15, B-40 to

B-41, B-42
defncopy utility command

character set conversion and 18-5, 18-7
delete command

auditing use of 16-11
transaction log and 7-2

Deleting
See also Dropping
files 3-12

Delimited identifiers, recognizing 12-5
Demand locks 13-9
density option 8-9 to 8-11
Denying access to a user 4-10, 4-11
Dependencies, database object

sysdepends table B-22
Device failure 7-6

dump transaction command after 8-2,
8-27 to 8-28

Device fragments 3-6
Devices 3-7

See also Database devices; Dump
devices; Master device

adding 3-7 to 3-10

aliasing names of 7-19
audit system 16-3
dropping 3-12, 8-38
information listings on 3-11
initializing 3-7 to 3-10
listing 7-19
names 8-37
names for physical 3-9, 7-18 to 7-20
operating system constraints 3-9
splitting tables across 12-44 to 12-46
system tables entries for B-23
user connections and 12-28, 12-29
using separate 3-3, 3-25, 12-44, 14-6

devices configuration variable 12-34
Diagram, pubs2 database C-20
Direct updates to system tables B-3

See also allow updates configuration vari-
able

Dirty pages 7-3, 12-24
Dirty reads 13-3
Disabling mirroring. See disk unmirror

command
discounts table, pubs2 database C-13
Disk allocation pieces 3-35, B-57
Disk controllers 3-10, 3-35
Disk devices

See also Database devices; Dump
devices; Space allocation

adding 7-20
dumping to 7-18
mirroring 3-14 to 3-20
sysdevices table B-23
unmirroring 3-18

disk init command 3-2, 3-4, 3-5, 3-7 to 3-10
allocation and 6-2
backing up master after 7-22
mirror devices and 3-17

disk mirror command 3-2, 3-14, 3-16 to 3-20
Disk mirroring

approaches to 3-14 to 3-16
asynchronous I/O and 3-17
benefits 3-14
commands 3-16 to 3-20

10 Index

SYBASE SQL Server Release 10.0

disk mirror command 3-2, 3-14, 3-16 to
3-20

effect on I/O 3-17, 3-20
initializing 3-17
recovery and 3-3
restarting 3-19
status in sysdevices table 3-12
stopping 3-18

disk refit command 9-14 to 9-15
disk reinit command 9-13

See also disk init command
disk remirror command 3-19

See also Disk mirroring
disk unmirror command 3-18

See also Disk mirroring
Disks. See Database devices; Devices;

Dump devices
drop commands

auditing use of 16-9
drop database command 3-32

dbcc dbrepair dropdb and 6-14
for failed devices 8-37

drop logins option, sp_dropserver 15-4
dropdb option, dbcc dbrepair 6-14, 8-37
Dropping

aliases 4-18
damaged database 6-14
database devices 3-12, 3-32
databases 3-32, 6-14, 8-37
devices 3-12, 3-32, 8-38
dump devices 3-12, 7-20
groups 4-11
guest users of master 4-8
logins from servers 4-10
master device from default space pool

3-13
remote logins 15-4, 15-8
remote servers 15-4
segments and database objects 3-41
thresholds 10-7
user from a database 4-10 to 4-11
users from servers 4-10
users who own database objects 4-11

dump database command 8-1 to 8-40
backup device 8-5
database name 8-5
dbcc schedule and 6-17
disk init and 3-8
permissions for execution 7-12
tape handling 8-12
volume labels 8-12
when to use 1-9, 1-10, 6-17, 7-20 to 7-24

Dump devices
adding 7-20
disks as 7-18
dropping 3-12, 7-20
files as 7-18
information about 3-11
listing 7-19
logical names for 7-18 to 7-20
maximum allowed 8-16
multiple 8-14 to 8-18
permissions for 7-15
redefining 7-20
specifying 8-5, 8-6 to 8-7
sysdevices table and 3-4, 7-19, B-23
system tables entries for B-23
tape retention and retaindays meaningful

for 8-20
tapes as 7-17, 12-34

Dump striping 8-14 to 8-18
backing up databases to multiple

devices 7-12
dump transaction command 3-25, 3-26, 3-29,

8-1 to 8-40
in master database 7-23
maximizing space 8-29
in model database 7-24
permissions for execution 7-12
threshold procedures and 10-13
trunc log on chkpt and 7-4, 12-12 to 12-13
with no_log option 7-22, 8-29
with no_truncate option 8-27
with truncate_only option 8-29

Dump, database 1-9, 6-17
database name 8-5
file name 8-13 to 8-15

System Administration Guide 11

SYBASE SQL Server Release 10.0

multiple to a single volume 8-21
routine 7-7
sp_volchanged prompts 8-31 to 8-33

Dump, transaction log 7-7
database name 8-5
file name 8-13 to 8-15
sp_volchanged prompts 8-31 to 8-33

dumpvolume option 8-12
dup_in_subquery option, set 12-4
Duplication. See Disk mirroring
Dynamic configuration variables

allow updates 1-6, 12-26 to 12-27, B-3
recovery interval 12-24 to 12-26

Dynamic system table. See syscurconfigs
table

E
Editing. See Changing; Updating
Ellipsis (...) in SQL statements xxxiii
Encoding. See Character set conversion
End-of-tape marker 8-11
engine adjust interval configuration variable

12-36
Engines 14-1

functions and scheduling 14-2 to 14-3
identification numbers 11-5
managing 14-5 to 14-6
number of 12-36, 14-5 to 14-6
resetting number of 14-5
sysengines table B-25
system tables entries for B-2, B-25
tasks of server 14-3 to 14-4

English language, U.S. B-31
@@error global variable 12-17
Error logs 11-6

@@max_connections and 12-27
creation and ownership 11-4
format 11-5
purging 11-5

Error messages 11-2 to 11-11
altering Server-provided 11-6, 17-2
character conversion 18-4, 18-6
creating user-defined 11-6

for fatal errors 11-9 to 11-11
numbering of 11-2
server.loc file 17-1
severity levels of 11-5 to 11-11
system tables entries for B-39
tablealloc allocation 6-13, 6-18
thresholds and 10-12
user-defined 11-6

Errors
See also Error logs; Error messages
all processes affected by 11-9 to 11-11
auditing 16-6
character conversion 18-3 to 18-4
checking status of 12-17
correction with dbcc 6-11, 6-12
fatal 11-6 to 11-7, 11-9 to 11-11
input/output 9-1
logging 11-4, 12-27
multiple 11-1
reporting of 11-11
segmentation 9-1
Server responses to 11-1 to 11-11
state numbers 11-1
user 11-6, 11-7 to 11-9

EUC JIS. See Japanese character sets
Exclusive locks

page 13-7
table 13-8

execute command
denying permission with proc_role 5-23

Expressions
types of xxxiv

Extending segments 3-39 to 3-40
extent i/o buffers configuration variable

12-43
Extents 3-51, 6-3, 6-12

F
Failures, media 11-11

copying log device after 7-7, 8-27 to
8-28

diagnosing 8-35
recovery and 7-6

12 Index

SYBASE SQL Server Release 10.0

fast option
dbcc indexalloc 6-13, 6-16
dbcc tablealloc 6-12, 6-16

Fast version, dbcc checktable 6-14
Fatal errors

backtrace from kernel 11-4, 11-6
error messages for 11-6 to 11-7
severity levels 19 and up 11-9 to 11-11

Fields. See Columns
File conversion. See Character set

conversion
File descriptors 12-27
file option 8-13 to 8-15
Files

character set 17-2
character set translation (.xlt) 17-2
dropping and deleting 3-12
dump to 7-18
error log 11-4
interface 12-27
interface, and Backup Server 8-8
localization 17-1 to 17-2
naming dump 8-13 to 8-15

fillfactor configuration variable
index page size and 12-32 to 12-33,

14-7
in SMP environment 14-7

fillfactor option
locking and 13-22

Finding database objects 11-7
Finding users 4-21
fipsflagger option, set 12-4
fix option

dbcc checkalloc 6-10
dbcc indexalloc 6-13
dbcc tablealloc 6-12, 6-18

fix_text option, dbcc 6-14, 17-10 to 17-11
Floating point data xxxiv
for load option

alter database 3-31
create database 3-27

Foreign keys
pubs2 database C-18
syskeys table B-29

Formulas, user requirements and 12-28
See also Overhead

Fragments, device space 3-6, 3-33, 3-44
Free space, log segment and 10-1 to

10-17
full option

dbcc indexalloc 6-13, 6-16
dbcc tablealloc 6-12, 6-16

G
Global audit options, sysauditoptions

system table B-6
Global variables 12-16 to 12-18

See also individual variable names
sp_monitor report on 12-14 to 12-16

grant command 3-23, 5-11 to 5-18
all keyword 5-12
auditing use of 16-9
and "public" group 5-14, 5-17
sysprotects table B-45

grant option
sp_role 2-6

Granting roles with sp_role 2-6
group by clause

tempdb database and 1-11
Groups

See also "public" group
changing 4-15
conflicting permissions and 5-17 to

5-18
creating 4-5 to 4-6
dropping 4-11
grant and 5-15
naming 4-5
permissions heirarchy and 5-14
revoke and 5-15
sysusers table entries for B-59

Guest accounts B-59
Guest users 5-8

adding 4-7
creating 4-7
permissions 4-8
pubs2 database and 1-12, 4-9

System Administration Guide 13

SYBASE SQL Server Release 10.0

in user databases 4-8

H
Hankaku Katakana. See Japanese

character sets
Hardware

errors 11-11
unmirroring 3-18

headeronly option 7-9, 8-24 to 8-27
Help

Technical Support xxxiv
Hierarchy

datatype B-55
Hierarchy of permissions. See

Permissions
holdlock keyword

locking 13-9
shared keyword and 13-13

Hysteresis value, @@thresh_hysteresis
global variable 10-11

I
I/O errors 9-1
i/o flush configuration variable 4-23, 12-36
I/O usage statistics 4-23
Identifiers

delimited, identifying 12-5
identity burning set factor configuration

variable 12-43
IDENTITY columns 12-4
@@identity global variable 12-17
Identity of user. See Aliases; Logins;

Users
identity_insert option, set 12-4
@@idle global variable 12-16
IDs, server role (sysroles table) B-50
IDs, user 1-6, 4-21, 5-5
image datatype

performance effects of 3-35
size returned in query 12-7, 12-18
storage on separate devices 3-49
sysindexes table and 3-44, 3-49, B-26

Impersonating a user. See setuser
command

Index pages
data cache and 12-32

indexalloc option, dbcc 6-13, 6-16
Indexes

See also Clustered indexes; Database
objects; Non-clustered indexes

assigning to specific segments 3-46,
12-44

character-based 17-8
database dumping after creating 7-21
fillfactor percentage for 12-32 to 12-33
integrity checks 6-13, 6-14
locking using 13-7
multiple 14-7
naming 12-19
Object Allocation Maps of 6-5
rebuilding 7-21, 17-8 to 17-9
reindex integrity check 6-14, 17-9
single device placement for 12-44
SMP environment and multiple 14-7
sort order changes and 6-7, 17-7
suspect 11-10, 17-7, 17-8 to 17-9
system tables entries for B-26
update statistics on 12-18 to 12-19

Information (Server)
See also System procedures
aliases 4-18
backup devices 7-19
changing user 4-12 to 4-15
configuration variables 12-20, B-16,

B-19
database devices 3-11, 3-50
database options 12-9 to 12-13
database size 3-23, 3-51
database storage 3-32
databases B-20 to B-21
dbcc output 6-18
device names 7-19
devices 3-11
disk refit 9-14
dump devices 3-11, 7-19
error messages 11-2 to 11-11

14 Index

SYBASE SQL Server Release 10.0

locked logins 4-12
logins 4-20
Open Client applications 11-6
permissions 5-18 to 5-20
problems 11-4
remote server logins 15-10
remote servers 15-6
segments 3-41 to 3-43, 3-50 to 3-52, 6-9
severity levels 11-5 to 11-11
space usage 3-50 to 3-52
status (Severity level 10) 11-7
thresholds 10-5
users, database 4-19 to 4-24, 4-24

Information messages (Server). See Error
messages; Severity levels

init option 8-18 to 8-22
Initializing

database devices 3-7 to 3-10
disk mirrors 3-17

insert command
auditing use of 16-11
transaction log and 7-2

Installing
audit system 16-2 to 16-3
Sever 3-4

installmaster script 9-18
sybsystemprocs recovery with 7-24

installmodel script 9-15
installpubs2 script 1-7
Insufficient permission 11-8
Insufficient resource errors (Level 17)

11-9
Integer data

in SQL xxxiv
Intent table locks 13-8

deadlocks and 13-21
Interfaces file 12-27

Backup Server 7-15, 8-8
Internal error, non-fatal 11-9
International language support. See

Character set conversion;
Languages

@@io_busy global variable 12-16
iso_1 character set 18-1

@@isolation global variable 12-17
Isolation levels

cursors 13-12
default 13-10, 13-12
dirty reads 13-3
holdlock keyword 13-9
non-repeatable reads 13-4
phantoms 13-5
transactions 12-7, 13-3

isql utility command
character set conversion and 18-5, 18-7
passwords and 15-10
status and informational messages

11-6
system administration and 1-2
user connections and 12-28

J
Japanese character sets 18-1

conversion between 18-3
EUC JIS 18-3
Hankaku Katakana 18-3
Shift-JIS 18-3

Joins
views and 5-21

K
Kernel error messages 11-4, 11-6
Keys, table

pubs2 database primary and foreign
C-18

syskeys table B-29 to B-30
system 1-4, B-29

Keywords A-1 to A-6
APT-SQL A-3
Transact-SQL 12-5, A-1 to A-2

kill command 11-12 to 11-15

L
Labels

tape, SQL 8-26

System Administration Guide 15

SYBASE SQL Server Release 10.0

Labels, device. See Segments
@@langid global variable 12-17
Language defaults 4-3, 12-5, 12-7, 12-22,

12-35
changing 17-3 to 17-11
us_english 12-5, 12-35, 18-5, 18-7

@@language global variable 12-17
language in cache configuration variable

12-36
Language Modules 17-1 to 17-3
language option, set 12-5
Languages, alternate 17-1 to 17-12

cache 12-36
configuring 17-5
date formats in 17-11
installing 17-5
localization files 17-1 to 17-3
syslanguages table B-31
system tables entries for B-31
without Language Modules 17-11

Last-chance thresholds 10-1 to 10-17
creating 10-17
dumping transaction log 10-13
number of free pages for 10-6
procedure, creating 10-12 to 10-16
procedure, specifying new 10-6
sample procedure for 10-14 to 10-16

lct_admin system function 10-17
Leaf pages 12-33
Levels, severity. See Severity levels
Linkage, page 6-7

See also Pages (data)
Linking users. See Aliases
List

command permissions 5-2
sp_volchanged messages 8-31 to 8-33
system tables B-1 to B-3

Listeners, network 12-27
Listing

dump files on a tape 7-9, 8-24 to 8-27
listonly option 7-9, 8-24 to 8-27
load database command 8-1 to 8-40

after character set changed 17-7
after sort order changed 17-7

automatic remapping 8-39
for master database 9-12
for model database 9-17
permissions for execution 7-12
for sybsystemprocs database 9-20

load transaction command 8-1 to 8-40
permissions for execution 7-12

Load, database 8-39
sp_volchanged prompts 8-34

Load, transaction log
order of dumps 8-39
sp_volchanged prompts 8-34

Local and remote servers. See Remote
servers

local option, sp_addserver 15-3
Local servers 15-3
locales directory 17-1
Localization files 17-1 to 17-2
Locking 13-1 to 13-23

accounts 2-5
by dbcc commands 6-15, 17-11
concurrency 13-5, 13-21
control of 13-2, 13-6
databases during recovery 7-8
deadlocks 13-19 to 13-21
entire table 13-6
example of 13-16 to 13-18
for update clause 13-12
forcing a write 13-9
guidelines 13-22
holdlock keyword 13-9
indexes used 13-7
logins 2-5, 4-11
noholdlock keyword 13-12
overhead 13-5
performance 13-21
reducing contention 13-22
shared keyword 13-13
SMP environment 14-3
temporary tables 13-6
transactions 13-2
and update statistics 12-19

Locking and cursors 13-12

16 Index

SYBASE SQL Server Release 10.0

Locks
configuring number of 12-31
demand 13-9
exclusive page 13-7
exclusive table 13-8
granularity 13-5
intent table 13-8
limits 13-14
number of available 12-31
page 13-7
releasing 13-10
shared page 13-7
shared table 13-8
size of 13-6
summary of 13-14
syslocks table B-33
system tables entries for B-33
table 13-8
types of 13-6, 13-19
update page 13-7
viewing 13-18

locks configuration variable 12-31
log on option

alter database 3-31
create database 3-3, 3-6, 3-25, 3-27

Log segment
thresholds for 10-7 to 10-10

LOG SUSPEND status, sp_who and 10-4
Logical address 3-35
Logical expressions xxxiv
Logical names 7-18
Login names. See Logins
Logins

See also Remote logins; Users
adding to servers 4-2 to 4-5
alias user to specified 4-17
auditing 16-5
character set conversion and client

18-4
creating 2-5
current user 4-19
database object owner 2-4
“dbo” user name 1-2, 2-3
displaying account information 2-7

dropping from servers 4-10
finding 4-20
information on 4-20
locking 2-5, 4-11
“sa” 2-5, 9-8, 9-13
“sa” password 9-5
syslogins table B-36 to B-37
sysremotelogins table B-49

Logs. See Transaction logs
logsegment log storage 3-4, 3-36
Loops

syslogs changes and infinite B-38
Losing unlogged data 12-12
LRU/MRU management 12-32
lstart column 3-35

M
Machine names, character set

conversion and 18-5
Machine ticks 12-16
Machine types, moving databases

between 3-27
Macintosh character set 18-3
Management, space. See Space

allocation; Storage management
Managing users. See Users
Mapping

device name to physical name 3-7
remote users 15-6 to 15-9
sysusages table B-57

master database 1-2, 1-8 to 1-9
See also Disk mirroring; System tables
backing up 1-9, 7-22 to 7-23
backing up transaction log 7-23
changing option settings 12-9
commands that change the 7-22
creating 3-4
damage symptoms 8-35
as default database 4-3
dropping guest users of 4-8
dumping 7-18
extending with alter database 3-31
guest user in 4-8

System Administration Guide 17

SYBASE SQL Server Release 10.0

keys for system tables in 1-4
ownership of 2-3, 3-30, 5-9
sp_monitor effect on 12-18
sysdevices table 3-11
system procedures and 1-4
system tables B-2
as user default database 4-3

Master device 1-7, 3-9, 3-11
See also Database devices
buildmaster initialization of 9-4, 14-5
disk mirroring of 3-14 to 3-16
rebuilding with buildmaster 9-5
recovery and 9-6
removing from default space pool

3-12, 3-13
sp_diskdefault and 3-13
user connections and 12-28

Master network listeners 12-27
master..sysusages. See sysusages table
Master-recover mode 9-5
max online engines configuration variable

12-36, 14-5
@@max_connections global variable

12-17, 12-21, 12-27
@@maxcharlen global variable 12-17
maximum network packet size configuration

variable 12-39
Memory

See also Space allocation
audit records 12-38
configuring 12-27 to 12-30
open databases and 12-31
optimizing for your system 12-29 to

12-30
procedure cache 12-32
Server needs for 12-29, 12-31
shared 14-2
in SMP sites 14-6
user connections and 12-27

memory configuration variable 12-29 to
12-30, 14-6

Messages
Backup Server 8-22 to 8-23
error 11-2 to 11-11

sp_volchanged list 8-31
sysmessages table B-39
system 11-2 to 11-11, 17-6
sysusermessages table B-58
user-defined 11-6, B-58

Midpoint between thresholds 10-11
Migration

of tables to clustered indexes 3-48
min online engines configuration variable

12-36, 12-36, 14-5
Mirror devices 3-14, 3-17, 3-19, 12-28
Mirroring. See Disk mirroring
Miscellaneous user error 11-8
Mistakes, user. See Errors; Severity levels
mode option, disk unmirror 3-18
model database 1-9

See also System tables
automatic recovery and 7-5
backing up 7-23 to 7-24
backing up transaction log 7-24
changing database options 12-12
changing options via 12-9
creating 3-4
keys for system tables in 1-4
restoring 9-17 to 9-18
size 3-10, 3-23, 12-33

Modifying server logins 4-14
Monetary datatypes

formatting 17-1
Monitoring

CPU usage 14-6
performance (system) 12-1 to 12-9,

12-14 to 12-18
spt_monitor table 1-6, 12-18

Month values
alternate language B-31
short (abbreviated) B-31
syslanguages table B-31

Moving
a table 3-40
a transaction log 3-28 to 3-29

Multibyte character sets 6-14, 17-8
changing to 17-10
incompatible 18-3

18 Index

SYBASE SQL Server Release 10.0

Multiprocessor servers, managing 14-1
to 14-6

Multiuser environments, splitting tables
in 12-44

N
Names

See also Information (Server); Logins
alias 4-17
ASCII character 18-5
character set B-11
column, in commands 11-8
device 3-8, 8-37
device, in sysdevices 3-5
dump device 7-18, 7-20
finding user 4-21
group 5-14
impersonating user 5-8
index 12-19
machine 18-5
mapping remote user 15-7
original identity 5-9
partial, in option specification 12-14
physical device 3-8, 7-20
qualifying database objects 2-4
remote server 15-3
segment 3-35, 3-37
server 12-17, 15-4
server user 4-6, 4-21, 15-7
sort order B-11
system procedures 1-4
user 4-6, 4-19, 4-21, 5-10, 5-14, 18-5

Naming
database object 11-7
dump files 8-13 to 8-15
groups 4-5

@@ncharsize global variable 12-17
nested triggers configuration variable

12-22, 12-34
Nesting

levels 12-17
@@nestlevel global variable 12-17
net password encryption option 15-5

Network connections 12-21, 12-27
Networks

backups across 8-8 to 8-9
dump striping and 8-17
dumps across 8-6
loads across 8-6
restoring across 9-11

no chkpt on recovery database option 12-11
no free space acctg database option 12-11
no free space acctg option, sp_dboption 10-17
nocount option, set 12-5
nodismount option 8-18 to 8-19
noexec option, set 12-5
nofix option

dbcc indexalloc 6-13
dbcc tablealloc 6-12

noholdlock keyword, select 13-12
Non-clustered indexes

fillfactor and 12-33
moving between devices 3-40

Non-dynamic configuration variables
12-20, 12-24

Non-logged operations 12-12
Non-repeatable reads 13-4
Non-stop recovery 3-3, 3-15
noserial option, disk mirror 3-17
notify option 8-22 to 8-23
nounload | unload option 8-18 to 8-20
null keyword

in sp_addlogin 4-4
Null passwords 4-14, 9-5
Null values

comparing 12-2, 12-8
Number (quantity of)

database devices 12-34
dump devices 8-16
engines 12-36, 14-5
errors corrected with dbcc 6-12
extents 6-3
indexes 14-7
locks 12-31
open databases on Server 12-30
open objects 12-31
remote sites 15-12

System Administration Guide 19

SYBASE SQL Server Release 10.0

segments 3-36
Server databases 3-21
simultaneous SQL connections 12-17
SMP system engines 14-5
user connections (@@max_connections)

12-17, 12-21, 12-27
Number of pages

used by table or index B-26
Numbers

device 3-9, 3-35
engine 11-5
error message 11-2, 12-17
global variable unit 12-16
segment value 3-34, 8-36
severity level 11-5 to 11-11
sort order 12-35
status bit (sysdevices) 3-11
virtual device 3-35

Numeric expressions xxxiv

O
Object Allocation Map (OAM)

checking with dbcc commands 6-8 to
6-9, 6-12

pages 6-5
Object owners. See Database object

owners
Objects. See Database objects
Offset position

column B-13
offsets option, set 12-5
on keyword

alter database 3-31
create database 3-21, 3-23, 3-25
create index 3-38
create table 3-38
grant 5-14
revoke 5-14

Open Client DB-Library applications
informational messages 11-6

open databases configuration variable
12-30

open objects configuration variable 12-31

OpenVMS systems
@@maxconnections global variable

12-27
contiguous option on 3-10
foreign device 3-9
Operator permissions 7-12
preventing tape dismounts 8-19
REPLY command 8-30
volume change messages 8-22

Operating systems
constraints 3-9
copy commands corrupting databases

7-6
failures and automatic recovery 7-5
file mirroring 3-17
SYBASE task scheduling and 14-2 to

14-3
Operator 2-3

activating role 12-6
permissions 5-6
tasks of 2-3, 7-12

optimized report
dbcc indexalloc 6-13, 6-16
dbcc tablealloc 6-12, 6-16

Option names, specifying 12-14
Options

database 12-9 to 12-14
for processing queries 12-1 to 12-9
remote logins 15-9 to 15-10
remote servers 15-5 to 15-6
server 15-5 to 15-6
unique string for 12-14

Order
of date parts 12-4

order by clause
tempdb database and 1-11

Order of commands
clustered index creation and 12-44,

12-46
for database and log dumps 12-12
grant and revoke statements 5-17 to 5-18
object-level dbcc checking 6-17

Overflow errors
set arithabort and 12-3

20 Index

SYBASE SQL Server Release 10.0

Overhead
See also Formulas
user connection 12-27

Override. See with override option
Owners. See Database object owners;

Database Owners
Ownership

chains 5-24

P
@@pack_received global variable 12-16
@@pack_sent global variable 12-16
Packet size

configuring 12-38 to 12-42
setting default 12-38
setting maximum 12-39

@@packet_errors global variable 12-16
Packets, pre-read 15-13
Page locks 13-6

types of 13-7
Pages (data) 3-7

allocation of 3-33, 6-2
blocksize and 8-11
dirty 7-3, 12-24
fillfactor for index 12-32 to 12-33, 14-7
filling up transaction log 3-28, 8-29
index 12-32 to 12-33, 14-7
linkage in tables and indexes 6-7
management with extents 6-3, 6-12
numbering in database 3-35
OAM page 6-5
recently used 12-32
starting (lstart) 3-35

Parallel processing. See SMP (symmetric
multiprocessing) systems

Parameters, procedure 4-4
parseonly option, set 12-5
Partitions, disk 3-9, 3-14
Passwords

changing 4-13
character set conversion and 18-5
checking date changed 4-20
choosing 4-2

encryption over network 15-5
expiration interval 12-37
expired 12-37
forgotten 5-6
net password encryption option 15-5
null 4-14, 9-5
remote users 15-5, 15-9
rules for 4-2
sp_password 4-3, 4-13

Percent sign (%)
place holder in error message 11-3

Performance
audit queue size 12-38
database object placement and 12-44
disk mirroring and 3-3, 3-15
fillfactor effect on 12-32
free-space accounting and 10-17
locking and 13-21
memory and 12-30
monitoring 12-1 to 12-9, 12-14 to 12-18
segments use and 3-35, 12-44
set options for 12-1 to 12-9
SMP environment 14-5 to 14-6
space allocation and 3-3, 12-44
speed and 3-3
windowing systems use and 12-29

Permissions
aliases and 4-16
assigned by Database Owner 5-12
assigning 5-12
checking on indirect references to

objects 16-11
columns 5-13
command 5-2 to 5-4, 5-11
create database 3-22 to 3-23, 5-5
database object owner 2-4, 5-9
Database Owners 2-4, 5-1 to 5-4, 5-6
dbcc commands 6-2
default 1-10, 5-2 to 5-4
denying 11-8
disk init 3-10
granting 5-11 to 5-18
groups and 4-5
guest users 4-7, 4-8

System Administration Guide 21

SYBASE SQL Server Release 10.0

hierarchy of 5-14
information on 5-18 to 5-20
insufficient (Level 14) 11-8
master database 1-8
mismatched suids 9-16
model database 1-10
object 2-4, 5-3, 5-9
operator 5-6
ownership chains and 5-24
"public" group 5-2 to 5-4, 5-10, 5-14,

5-17
remote users 15-9
revoking 5-11 to 5-18
revoking from groups 4-5
selective assignment of 5-16
stored procedures 5-9, 5-14, 5-23, 15-9
summary of 5-1 to 5-4
sysprotects table B-45
System Administrator 2-2, 5-1 to 5-5
system procedures 5-7
System Security Officer 2-3, 5-6
system tables 5-7, B-3
system tables entries for B-45
tables 5-9, 5-14
tables versus views 5-20
tempdb database 1-12
threshold procedures and 10-5, 10-6
transfers and 3-30, 5-2, 5-9
triggers and 5-28
views 5-9, 5-14, 5-20 to 5-23
on views instead of columns 5-22

Phantoms in transactions 13-5
Physical resources, managing. See

Storage management
Place holders

error message percent symbol (%)
11-3

Plan
object B-42

Pointers, device. See Segments
Precedence

dump and load characteristics 8-9
Preferences, user name 4-6

pre-read packets configuration variable
15-12

Primary database 12-11
Primary keys

pubs2 database C-18
syskeys table B-29

primary option, disk unmirror 3-18
Privileges. See Permissions
Probe Process, Two Phase Commit B-36
proc_role system function 2-7, 5-23
Procedure cache 11-10, 12-32
procedure cache configuration variable

12-31
Procedure calls. See Remote procedure

calls
Procedures. See Stored procedures;

System procedures
Process affinity 14-1, 14-3
Processes (Server tasks) 11-12, 11-15,

14-1
See also Servers
aborting when log is full 10-3
awakening 10-4
current on server 4-19
information on 4-19
killing 11-12 to 11-15
running time in scheduler 12-33
suspending when log is full 10-3
sysprocesses table B-43
system tables entries for B-43

Processes, SMP. See SMP (symmetric
multiprocessing) systems

@@procid global variable 12-17
procid option, set 12-5
Protection mechanisms. See Stored

procedures; Views
Protection system

See also Permissions
context-sensitive 5-22
hierarchy (ownership chains) 5-24
reports 5-18 to 5-20
summary 5-1 to 5-4
vulnerability to allow updates 12-26

22 Index

SYBASE SQL Server Release 10.0

"public" group 4-5, B-59
See also Groups
grant and 5-14, 5-17
guest user permissions and 4-8
permissions 5-2 to 5-4, 5-10
revoke and 5-14, 5-17
sp_adduser and 4-6
sp_changegroup and 4-16

publishers table, pubs2 database C-1
pubs2 database 1-12 to 1-13, C-1 to C-20

defaults C-19
diagram C-20
objects C-19
organization chart C-20
primary and foreign keys C-18
rules C-19
table names C-1
view C-19

Punctuation
enclosing in quotation marks 4-4

Q
Queries

conversion errors preventing 18-4
optimizing 12-18 to 12-19
processing plan 12-1 to 12-9
stack space requirements for 12-36

Question marks (??)
for suspect characters 18-4, 18-7

Queues, task 14-3
quoted_identifier option, set 12-5

R
Rapid recovery 3-15
Raw devices, mirroring 3-17
read only database option 12-12, 12-13,

17-8
Reads and writes, physical 3-4, 3-14
Rebooting, Server. See Restarts, Server
Rebuilding

master database 9-4

reconfigure command 12-23 to 12-24
database size variable and 3-23
recovery_interval and 12-25
stack size variable and 12-37

reconfigure with override option
allow updates and 1-6, 12-24, 12-26

Records, audit 16-2
Recovery

See also Disk mirroring
after failures 7-5, 7-6
after reconfiguration 17-7
after upgrade 9-9
auditing and 16-21
automatic remapping 8-39
from backups 7-6 to 7-12
changes to user IDs 7-23
configuration variables for 12-24 to

12-26, 12-34
from current log 8-27
database dump/log interactions 7-5
denying users access during 7-6
failures during 8-39
for load option and 3-27
loading databases 17-7
locking databases during 7-8
master database 1-9, 3-8
model database 9-17 to 9-18
non-stop 3-3, 3-15
planning backups for 1-10, 6-17
rapid 3-15
recreating databases 8-38
SMP engines and 14-5
sort order changes and 17-7
space allocation and 3-3, 8-39
step-by-step instructions 8-35 to 8-40
sybsystemprocs database 9-18 to 9-20
time and free space accounting 10-17
time required 7-6
up-to-date database copy method

12-11
recovery flags configuration variable 7-6,

12-22, 12-34

System Administration Guide 23

SYBASE SQL Server Release 10.0

recovery interval configuration variable 7-3,
12-24 to 12-26

long-running transactions and 7-3
Recovery of master database 9-2 to 9-16

automatic 7-5
backing up after 9-16
dropped users and 9-16
rebuilding 9-4
scheduling backups 7-22
user databases on master device and

9-6
user IDs and 7-23
volume changes during backup 9-2

Recursions, limited 12-6
Redundancy, full. See Disk mirroring
Re-establishing original identity 5-9
Referential integrity constraints

sysconstraints table B-18
sysobjects table B-40 to B-41
sysreferences table B-47

reindex option, dbcc 6-14, 17-9
Releasing locks 13-10
remote access configuration variable

12-22, 12-24, 12-35, 15-11
Backup Server and 7-17

Remote backups 7-12, 7-15
remote connections configuration variable

15-12
Remote logins

adding 15-6 to 15-8
configuration variables for 12-35,

15-11 to 15-13
dropping 15-4, 15-8
options for 15-9 to 15-10
sysremotelogins table B-49
system tables entries for B-49
timing out 15-5
trusted or untrusted mode 15-10

remote logins configuration variable 15-12
Remote procedure calls 12-27, 15-1 to

15-13
auditing 16-5
backups 7-13

configuration variables for 15-11 to
15-13

sysremotelogins table and B-49
sysservers table and B-52
thresholds and 10-16

Remote server users. See Remote logins
Remote servers 15-2 to 15-6

adding 15-2 to 15-13
dropping 15-4
information on 15-6
names of 15-3
options for 15-5 to 15-6
sysservers table B-52
system tables entries for B-52

remote sites configuration variable 15-12
Remote users. See Remote logins
remove option, disk unmirror 3-18
Removing. See Dropping
REPLY command (OpenVMS) 7-12, 8-30
Reporting errors 11-7, 11-9, 11-11
Reporting usage statistics 4-22
Reports

See also Information (Server)
dbcc 6-10, 6-12, 6-15
Server usage 4-22
sp_monitor global variables 12-14 to

12-18
Reserved columns B-3
Reserved connections. See user connections

configuration variable
Reserved words A-1 to A-6

See also Keywords
APT-SQL A-3
SQL92 A-4 to A-5
Transact-SQL 4-4, A-1 to A-2

Reset configuration. See Configuration
variables; reconfigure command

Response time 12-33
Restarts, Server 3-12

after reconfiguration 17-8
automatic recovery after 7-5 to 7-6
checkpoints and 12-11
configuration variable resetting and

12-20, 12-21, 12-23

24 Index

SYBASE SQL Server Release 10.0

reindexing after 17-8, 17-9
from same directory 11-5
system tables and 17-8
temporary tables and 1-11

retain option, disk unmirror 3-18
retaindays option 8-18 to 8-20

dump database 7-18, 12-34
dump transaction 7-18, 12-34

Return status
system procedures 1-5

revoke command 5-11 to 5-18
all keyword 5-12
auditing use of 16-9
and "public" group 5-14, 5-17
sysprotects table B-45

Revoking roles with sp_role 2-6
role option, set 12-6
Roles 2-1 to 2-8

auditing commands requiring 16-5
auditing toggling of 16-5
Database object owners 2-4 to 2-5
Database Owners 2-3
displaying 2-7
in grant and revoke statements 5-14
granting 2-6
management 2-5 to 2-8
Operator 2-3
permissions and 5-14
proc_role system function 2-7
revoking 2-6
set and 2-6, 12-6
stored procedures and 2-7, 5-23
sysloginroles table B-35
sysroles table B-50
syssrvroles table B-53
System Administrator 2-1 to 2-2
System Security Officer 2-2
turning on and off 2-6, 12-6

Roll back processes
recovery interval and 12-26
server stack capacity and 12-36
uncommitted transactions 7-5

Roman 8 character set (roman8) 18-1
@@rowcount global variable 12-5, 12-17

rowcount option, set 12-6
Rows, table

sysindexes 3-6
roysched table, pubs2 database C-14 to

C-16
RPCs. See Remote procedure calls
Rules

See also Database objects
protection hierarchy 5-27
pubs2 database C-19
system tables entries for B-15, B-40 to

B-41, B-42
Run values 12-20
Running out of space. See Space

S
“sa” login 2-5, 9-8, 9-13

password 9-5
sales table, pubs2 database C-12
salesdetail table, pubs2 database C-9 to

C-11
Sample database. See pubs2 database
Savepoints

error (Level 13) 11-8
Scheduling, Server

database dumps 7-20
dbcc commands 6-16 to 6-17
time slice setting 12-33

Scripts
for backups 7-23
installmaster 9-18
installmodel 9-15
logical device names in 7-19
operating system 6-17
permissions on 2-5

Search conditions
locking 13-7

Secondary database 12-11
secondary option, disk unmirror 3-18
segmap column 3-6, 3-34, 8-36
segment column 3-34
Segmentation errors 9-1

System Administration Guide 25

SYBASE SQL Server Release 10.0

Segments 3-6, 3-35 to 3-52, 12-44 to 12-46
See also Database devices; Space allo-

cation
assigning a table or index to specific

3-46
clustered indexes on 3-38, 3-40, 3-48,

12-46
creating 3-4, 3-37
creating database objects on 3-38
database object placement on 3-40,

3-49, 8-39, 12-44
default 3-4, 3-36
dropping 3-41
extending 3-39 to 3-40
free space accounting and 10-17
information on 3-41 to 3-43, 3-50 to

3-52, 6-9
listing thresholds for 10-5
logsegment 3-4, 3-36, 10-1 to 10-17
managing free space 10-1 to 10-17
non-clustered indexes on 3-40
performance enhancement and 3-35,

12-44
placing objects on 3-40, 8-39, 12-44
removing devices from 3-41
sharing space on 3-49
sp_helpthreshold report on 10-5
syssegments table 3-6, B-51
system 3-4, 3-36
system tables entries for 3-34, 3-43 to

3-44, B-51
text/image columns and 3-49
tutorial for creating 3-44 to 3-48
user-defined 8-36
values table 3-34

select command
auditing use of 16-11
permissions and 5-13
select*, error message 5-22
size of returned data 12-18

select into command
database dumping and 7-21
select into/bulkcopy database option

12-12

select into/bulkcopy database option 12-12
model database and 1-10
transaction log dumping and 12-12

self_recursion option, set 12-6
Sensitive information, views of 5-21
Sequence of commands. See Order of

commands
Sequence tree, object B-42
serial option, disk mirror 3-17
Serial writes, disk mirror and 3-17
Server aliases 15-3
Server engine. See Engines
Server information options. See

Information (Server)
Server restarts. See Restarts, Server
Server user name and ID 4-21
server.loc localization file 17-1
@@servername global variable 12-17, 15-3
Servers

See also Processes (Server tasks);
Remote servers

activities monitor 12-14 to 12-18
adding new logins to 4-2 to 4-5
adding users to 4-2 to 4-5
architecture for SMP 14-2 to 14-3
boot problems and memory 12-30
command and object permissions

summary 5-2 to 5-4
database creation steps 3-22
dropping logins from 4-10
error message severity levels 11-5 to

11-11
error messages 11-4, 17-2
fatal errors and 11-6 to 11-7, 11-9 to

11-11
installing 3-4
local 15-3
master-recover mode 9-5
memory needs 12-29, 12-31
monitoring activity of 12-14 to 12-18
multiprocessor 14-1 to 14-6
names of 15-4
non-fatal internal errors 11-9

26 Index

SYBASE SQL Server Release 10.0

object placement on segments 3-40,
8-39

passwords on 15-5, 15-9
permissions checking by 5-23
remote 15-2 to 15-7
scheduler 12-33
shutting down 11-15
single-user mode 9-3, 9-5, 12-12, 12-26
sort order consistency among 17-4
space allocation steps 3-32
syntax errors 11-8
task management in SMP 14-3 to 14-4
uniprocessor and SMP servers 14-7
user connections to 12-27 to 12-29
user information 4-19 to 4-24
users currently on 4-20
values for configuration variables

12-19
set command 12-1 to 12-9

char_convert 18-4, 18-6 to 18-7
option categories 12-7 to 12-8
options 12-2 to 12-7
syntax 12-1 to 12-2

setuser command 5-8
7-bit ASCII character data, character set

conversion for 17-4, 18-1, 18-5
Severity levels, error 11-5 to 11-11
Shared locks

holdlock keyword 13-9
page 13-7
table 13-8

Shift-JIS. See Japanese character sets
show_role system function 2-7
showplan option, set 12-6, 12-8 to 12-9
showserver utility command 9-12
shutdown command 11-15 to 11-17

automatic checkpoint process and 7-5
automatic recovery after 7-5
Backup Server 7-17

Shutting down servers 11-15
side option, disk unmirror 3-18
single user database option 12-12
Single-byte character sets 17-10

Single-user mode 9-3, 12-26, 17-8
database recovery and 7-8

Site handlers 12-27, 12-28, 15-12
Sites, remote 15-12
Size

See also Space
allocation units 3-7, 3-33
altering database 3-30 to 3-32
database 3-21
database device 3-9
database size (sysconfigures) 3-23
databases, estimating 3-24
dbcc fix_text transaction 17-10
indexes 3-24
memory 12-29 to 12-30
model database 3-10, 3-23, 12-33
new database 1-9, 3-23, 12-33
segment extension 3-39
select return data 12-18
stack size 12-36, 12-43
tables 3-24
tape dump device 7-20
tempdb database 1-12
text and image data 12-18
transaction logs 3-26, 12-13

size option
disk init 3-9

Sleep queue 14-3
Sleeping checkpoint process. See

Checkpoint process
SMP (symmetric multiprocessing)

systems
application design in 14-7
architecture 14-1 to 14-3
disk management in 14-6
environment configuration 14-4 to

14-6
task management in 14-3 to 14-4

Sort buffers, configuring 12-43
Sort order

changing 6-8, 6-14, 17-3 to 17-11
changing, recovery after 17-7
consistency among servers 17-4
database dumps and 8-25

System Administration Guide 27

SYBASE SQL Server Release 10.0

dbcc checktable and 6-8
default sortorder id 12-35
installing new 17-2
numbers 12-35
syscharsets system table B-11

sp_addalias system procedure 4-17
sp_addauditrecord system procedure 16-15

to 16-16
sp_addgroup system procedure 4-5
sp_addlanguage system procedure 17-11
sp_addlogin system procedure 4-2 to 4-5

reissuing after recovery 9-16
sp_addremotelogin system procedure 15-6

to 15-8
sp_addsegment system procedure 3-2, 3-6,

3-37, 3-41, 3-43
sp_addserver system procedure 15-2 to

15-4
sp_addthreshold system procedure 10-5 to

10-11
sysaudits table and 16-21

sp_addumpdevice system procedure 7-20
sp_adduser system procedure 1-10, 4-6 to

4-9
sp_auditdatabase system procedure 16-8 to

16-10
sp_auditlogin system procedure 16-7 to

16-8
sp_auditobject system procedure 16-10 to

16-13
sp_auditoption system procedure 16-4 to

16-6
sp_auditsproc system procedure 16-13 to

16-14
sp_changedbowner system procedure 3-23,

3-29, 5-9
sp_changegroup system procedure 4-5,

4-15
sp_clearstats system procedure 4-23
sp_column_privileges catalog stored

procedure 5-19
sp_configure system procedure 1-6, 12-20

to 12-23
audit queue size and 16-2

automatic recovery and 7-3
database size and 3-23
lock limits and 13-15
max online engines 14-5
remote logins and 15-11

sp_dboption system procedure 12-9 to
12-14

abort tran on log full database option 10-3
changing default settings with 3-22
checkpoints and 7-5
disabling free space accounting 10-17
disk unmirroring and 3-20
thresholds and 10-3

sp_diskdefault system procedure 3-2, 3-12
to 3-13

sp_displaylogin system procedure 2-7, 4-20
sp_dropalias system procedure 3-29, 4-18
sp_dropdevice system procedure 3-12,

3-32, 7-20
for failed devices 8-38

sp_dropgroup system procedure 4-10, 4-11
sp_droplogin system procedure 4-10, 4-10

reissuing after recovery 9-16
sp_dropremotelogin system procedure 15-8
sp_dropsegment system procedure 3-6,

3-41
sp_dropserver system procedure 15-4
sp_dropthreshold system procedure 10-7
sp_dropuser system procedure 3-29, 4-10,

4-11
sp_estspace system procedure 3-24
sp_extendsegment system procedure 3-2,

3-6, 3-39 to 3-40
reversing effects of 3-41

sp_helpdb system procedure 1-6
database option information 12-13
segment information 3-42 to 3-43
storage information 3-50

sp_helpdevice system procedure 1-6, 3-10,
7-19

sp_helpindex system procedure 1-6, 12-19
sp_helpjoins system procedure 1-4
sp_helpkey system procedure 1-4
sp_helplog system procedure 3-29

28 Index

SYBASE SQL Server Release 10.0

sp_helpremotelogin system procedure 15-10
sp_helprotect system procedure 5-18 to

5-19
sp_helpsegment system procedure 3-42,

3-43
checking space with 7-2

sp_helpserver system procedure 15-6
sp_helptext system procedure 1-5
sp_helpthreshold system procedure 10-5
sp_helpuser system procedure 4-18, 4-20
sp_indsuspect system procedure 17-8, 17-9
sp_lock system procedure 13-18
sp_locklogin system procedure 4-12

reissuing after recovery 9-16
sp_logdevice system procedure 3-28 to

3-29, 12-44
sp_modifylogin system procedure 4-3, 4-4,

4-14, 17-6
sp_modifythreshold system procedure 10-6
sp_monitor system procedure 12-14 to

12-18
sp_password system procedure 4-3, 4-13
sp_placeobject system procedure 3-40,

12-45
sp_remoteoption system procedure 15-9 to

15-10
sp_reportstats system procedure 4-22
sp_role system procedure 2-6
sp_serveroption system procedure 15-5 to

15-6
sp_spaceused system procedure 3-51

checking transaction logs with 7-2
sp_table_privileges catalog stored

procedure 5-20
sp_thresholdaction system procedure 10-1

creating 10-12 to 10-16
dumping transaction log 10-13
error messages and 10-12
parameters passed to 10-12
sample procedure 10-14 to 10-16

sp_volchanged system procedure 8-30
sp_who system procedure 4-19

blocking process 13-19
checkpoint process 7-4

LOG SUSPEND status 10-4
Space

See also Size; Space allocation
adding to database 3-30 to 3-32
between thresholds 10-11
estimating table/index size 3-24
extending database 3-30 to 3-32
fillfactor effect on 12-32
information on usage 3-51, 8-36 to 8-37
proportion of log to database 3-26
reserved and unreserved 3-51
running out of 8-29, 11-9, 12-13
sharing on segments 3-49
sp_dropsegment effect on 3-41

Space allocation
See also Database devices; Segments;

Storage management
assigning 3-23, 8-38
backup methods and 8-37
balance and split tables 12-44
changing once assigned 3-23, 3-30,

3-40
commands summary 3-2
contiguous 3-10, 3-33, 3-35
disk mirroring and 3-14 to 3-16
drop database effect on 3-32
errors correction with dbcc 6-11, 6-12
on an existing device 8-38
extents 3-51, 6-3, 6-12
functions of Server 3-32, 6-3
matching new database to existing

8-37
Object Allocation Maps (OAM) 6-5
pages 3-40, 3-51, 6-3
recovery/performance and 3-3 to 3-4,

12-44
recreating 7-8, 8-39
segments and 8-39
system tables entries for B-57
sysusages table 3-6, B-57
units 3-7, 3-33, 6-3, 8-36
verification with dbcc commands 6-11

Spaces, character 4-4
#spdevtab temporary table 1-6

System Administration Guide 29

SYBASE SQL Server Release 10.0

Speed (Server)
of dbcc commands 6-15
system performance and 3-3, 3-15
of transaction log growth 3-26
using segments 3-35

@@spid global variable 12-17
#spindtab temporary table 1-6
Splitting

index pages 12-32
tables across segments 12-44 to 12-46
tables across two disks 3-4

spt_committab table 1-6
spt_monitor table 1-6, 12-18
spt_values table 1-5, 12-23
@@sqlstatus global variable 12-17
Square brackets []

in SQL statements xxxiii
.srt localization files 17-2
srvname column, sysservers table 15-4
srvnetname column, sysservers table 15-4
stack size configuration variable 12-36
Standalone utilities and character sets

18-5
startserver utility command 3-12, 9-3

Backup Server and 7-17
master-recover mode 9-12

Static memory needs 12-29
Statistical data summary

dbcc output 6-19
sp_monitor report 12-14 to 12-18

Statistics
backup and recovery 7-24
I/O usage 4-22, 4-23

statistics io option, set 12-6, 12-7
statistics time option, set 12-6
Status

information messages (Level 10) 11-7
status bits in sysdevices 3-11
Stopping

Backup Server 7-17, 11-16
Server 11-16

Storage management
See also Caches; Space; Space alloca-

tion

about 3-1
changing database ownership 3-29
commands summary 3-2
creating user databases 3-20 to 3-27
database device initialization 3-7 to

3-11
default database devices 3-12 to 3-13,

3-40
defaults at installation 3-4
disk mirroring 3-14 to 3-20
dropping databases 3-32
information about 3-51
issues 3-3 to 3-4, 12-44
LRU/MRU 12-32
page fillfactor and 12-32 to 12-33
system tables and 3-4 to 3-6
using segments 3-38, 12-44 to 12-46

Stored procedure triggers. See Triggers
Stored procedures

See also Database objects; System pro-
cedures

allow updates variable and 12-26
auditing execution of 16-13 to 16-14
checking for roles in 2-7
creating 1-6
granting permission to roles on 2-7
indirect references to objects and 16-11
object dependencies and B-22
ownership chains 5-24
permissions on 5-9, 5-13, 5-14, 5-23,

15-9
procedure cache and 12-32
query options and 12-1 to 12-9
remote user access to 15-9
roles and 5-23
as security mechanisms 5-23
set commands in 12-8
set parseonly restriction 12-5
set showplan restriction 12-6
system tables changes and 1-6, 12-26
system tables entries for B-15, B-40 to

B-41, B-42
stores table, pubs2 database C-13
string_rtruncation option, set 12-7

30 Index

SYBASE SQL Server Release 10.0

stripe on option 8-15 to 8-18
Structure

configuration 14-4 to 14-6, B-19
localization files 17-2

Suffix names
temporary table 1-11

suid column 4-5, 4-17
Superuser. See System Administrator
suser_id system function 4-21 to 4-22
suser_name system function 4-21 to 4-22
sybinit installation program

character set changes using 17-3, 17-4
sort order changes using 17-3, 17-4

sybsecurity database 1-12, 16-1
automatic recovery and 7-5

sybsyntax database 1-13
sybsystemprocs database 1-4, 1-10 to 1-11

See also Databases
automatic recovery and 7-6
backing up 7-24
restoring 9-18 to 9-20
system procedures and 5-8
thresholds and 10-16

Symbols
See also Symbols section of this index
SQL statement xxxi to xxxii

Symmetric multiprocessing systems. See
SMP (symmetric multiprocessing)
systems

Syntax
errors in 11-8

Syntax conventions, Transact-SQL xxxi
to xxxiv

sysalternates table 4-17, B-5
See also sysusers table

sysauditoptions table 16-4, B-6 to B-7
sysaudits table 16-16 to 16-19, B-8 to B-10

accessing data in 16-18
archiving 16-19
extrainfo field 12-38
running out of space 16-21

syscharsets table B-11 to B-12
syscolumns table 6-9, B-13 to B-14
syscomments table B-15

sysconfigures table 12-20, 12-24, B-16 to
B-17

sysconstraints table B-18
syscurconfigs table 12-20, 12-31, B-19
sysdatabases table B-20 to B-21

create database and 3-22
disk refit and 9-14

sysdepends table B-22
sysdevices table 3-4 to 3-6, 3-10, B-23 to

B-24
create database and 3-25
disk init and 3-5
disk mirroring commands and 3-17
dump devices and 7-19
sp_dropdevice and 3-12
sp_helpdevice and 3-10
status bits 3-11, 3-35

sysengines table B-25
sysindexes table 3-6, 3-50, 17-8, B-26 to

B-28
syskeys table B-29 to B-30
syslanguages table B-31 to B-32
syslocks table B-33 to B-34
sysloginroles table B-35
syslogins table 4-23, B-36 to B-37

backup and recovery 7-23
character set conversion and 18-5
sp_addlogin effect on 4-4
visiting users and 4-9

syslogs table 7-2, B-38
See also Transaction logs
create database and 3-25
danger of changing the B-3
infinite loop if changes to B-38
modification of 1-4
monitoring space used by 3-52

sysmessages table 11-1, 11-3, B-39
sysobjects table 17-8, B-40 to B-41
sysprocedures table B-42
sysprocesses table B-43 to B-44
sysprotects table B-45 to B-46
sysreferences table B-47 to B-48
sysremotelogins table 15-8, B-49
sysroles table B-50

System Administration Guide 31

SYBASE SQL Server Release 10.0

syssegments table 3-6, 3-34, 3-43, B-51
sysservers table 15-1, 15-2 to 15-4, 15-6,

B-52
Backup Server and 7-15
srvname column 15-4
srvnetname column 15-4

syssrvroles table B-53
System Administrator 1-1 to 1-2, 2-1 to

2-2
activating role 12-6
error responsibilities of 11-6, 11-9 to

11-11
password and buildmaster 9-5
permissions 2-2, 5-1 to 5-5
resolving system problems 11-6, 11-9
single-user mode of Server 9-5
steps to restore master database 9-3 to

9-4
tasks of 2-2

System catalogs. See System tables
System databases 1-7 to 1-13

See also master database; model database;
sybsystemprocs database; tempdb
database

System functions
lct_admin 10-17

System messages. See Error messages;
Messages

System problems
See also Errors
Server responses to 11-1 to 11-11
severity level 10–18 11-7 to 11-9
severity level 19–24 11-9 to 11-11

System procedures 1-4 to 1-6
See also Information (Server); Stored

procedures; individual procedure
names

for adding users 4-1 to 4-2
for changing user information 4-12 to

4-15
creating 1-6
for managing remote servers 15-2 to

15-6
permissions 5-7

tables used by 1-5
on temporary tables 1-11
updating and B-3
using 1-5
for using segments 3-36

System Security Officer 2-2 to 2-3
activating role 12-6
last remaining account 2-6
permissions 2-3, 5-6
tasks of 2-2

system segment 3-4, 3-36
System stored procedures. See System

procedures
System tables 1-2 to 1-4, B-1 to B-3

See also Tables; individual table names
allow updates variable and 12-26, B-3
changes allowed to 5-7, 12-24
changes dangerous to 1-6, 12-26, B-3
corruption 11-11
create database and 1-2, 3-6, 3-43
creation of 1-2
dbcc checkcatalog and 6-9
dbcc reindex and 17-9
dbcc tablealloc nofix option 6-12
descriptions of individual B-5 to B-60
direct updates dangerous to 9-6
direct updates to 1-6, 12-26, B-3
keys for 1-4, B-29 to B-30
master database B-2
permissions on 5-7, B-3
querying 1-3, 1-6
reindexing and 17-9
segment information and 3-43 to 3-44
Server restarts and 17-8
sp_addgroup effect on 4-6
sp_adduser effect on 4-7
storage management relationships 3-4

to 3-6
stored procedures and 1-3, 1-6, 12-26
updating 1-6, 9-6, 12-24, B-3
for user databases 1-10

systhresholds table 10-16, B-54
systypes table B-55 to B-56
sysusages table 3-6, 3-43, B-57

32 Index

SYBASE SQL Server Release 10.0

corruption 11-11
create database and 3-22, 8-38
database space allocations and 3-33,

8-36
discrepancies in 9-15
disk refit and 9-14
recovery and 9-6

sysusermessages table B-58
sysusers table B-59 to B-60

permissions and 5-8
sp_addgroup effect on 4-6
sp_adduser effect on 4-7
sysalternates table and 4-17, B-5

T
Table locks 13-6

types of 13-8
Table Owners. See Database object

owners
tablealloc option, dbcc 6-11, 6-16
Tables

See also Database objects; System
tables

assigning to specific segments 3-46
auditing use of 16-7, 16-10 to 16-13
context-sensitive protection of 5-22
critical data in 6-18
dbcc checkdb and 6-9, 6-15
dbcc checktable and 3-26, 3-29, 6-7, 6-14,

6-15, 17-9
indirect references to 16-11
integrity checking with dbcc 6-7
integrity damage to 11-10
migration to a clustered index 3-48
moving between devices 3-40, 3-48
Object Allocation Maps of 6-5
object dependencies and B-22
ownership chains for 5-24
permission checking and 16-11
permissions information on 5-20
permissions on 5-9, 5-14
permissions on, versus views 5-20
read-only 12-33, 17-8

sort order of 6-8
splitting across segments 12-44 to

12-46
splitting across two disks 3-4
system tables entries for B-13, B-40 to

B-41
temporary 1-10 to 1-12, 14-7
underlying 5-21
without indexes 17-9

Tape dump devices
adding 7-20
for backups 7-17
dismounting 8-19
end-of-tape marker 8-11
preventing overwrites 7-18
reinitializing volumes 8-21
rewinding 8-19
sysdevices table B-23
tape retention configuration variable

12-34
volume name 8-12

tape retention configuration variable 7-18,
12-34

Tapes
information on dump files 7-9
protection against overwrites 8-20
rewinding 8-20

Task management in SMP 14-3 to 14-4
Technical Support xxxiv
tempdb database 1-11 to 1-12

See also Databases
automatic recovery and 7-6
creating 3-4
size of 1-12
in SMP environment 14-7
system tables entries and B-40 to B-41

Temporary tables 1-10 to 1-12, 14-7
locking 13-6
select into/bulkcopy database option and

12-12
Terminals

character set conversion for 18-7
installing new 17-2

System Administration Guide 33

SYBASE SQL Server Release 10.0

text datatype
chain of text pages 3-49
changing character sets and 6-14,

17-10 to 17-11
multibyte character sets and 6-14,

17-10 to 17-11
performance effects of 3-35
size returned in query 12-7, 12-18
storage on separate devices 3-49
sysindexes table and 3-44, 3-49, B-26

text values, dbcc fix_text upgrade of 6-14,
17-10 to 17-11

@@textsize global variable 12-7, 12-18
textsize option, set 12-7
@@thresh_hysteresis global variable 10-2,

10-11, 12-18
Threshold procedures

auditing and 16-21
creating 10-12 to 10-16
creating, logical names and 7-19
dumping transaction log and 10-13
error messages and 10-12
location of 10-5, 10-16
parameters passed to 10-12
permissions for 10-5, 10-6

Thresholds 10-1 to 10-17
adding 10-5 to 10-11
adding for log segment 10-7 to 10-10
changing 10-6
creating 10-4 to 10-11
data segments 10-10
defining default procedure 10-16
disabling non-log 10-17
displaying information about 10-5
hysteresis value 10-2
information about 10-5
last-chance 10-1 to 10-17
maximum number 10-4
midpoint between two 10-11
removing 10-7
sp_helpthreshold information on 10-5
space between 10-11
systhresholds table 10-16, B-54

Time interval
database backups 7-20
since sp_monitor last run 12-15

time slice configuration variable 12-33
timeouts option 15-5
Timestamps, order of transaction log

dumps 8-39
@@timeticks global variable 12-18
Timing

automatic checkpoint 7-3
titleauthor table, pubs2 database C-6
titles table, pubs2 database C-3 to C-5
Toggles, on-off (configuration variable)

12-23, 12-26, 12-35
@@total_errors global variable 12-16
@@total_read global variable 12-16
@@total_write global variable 12-16
@@tranchained global variable 12-18
@@trancount global variable 12-18
transaction isolation level option

set 12-7, 13-12
Transaction log duplication. See Disk

mirroring
Transaction logs

See also dump transaction command; sys-
logs table

alter database and 3-6
backing up 7-7
checking space used by 3-26
clearing after checkpoints 7-4 to 7-5
copying 7-2
create database and 3-6, 3-25
device placement 3-3, 3-6, 3-25, 3-28,

3-29
dumping after media failure 8-27 to

8-28
function of 7-2
master database 7-23
model database 7-24
modifying between loads 8-39
moving to release space 3-29
primary and secondary database

12-11
purging 8-29, 17-10

34 Index

SYBASE SQL Server Release 10.0

room for growth 7-2
running out of space 7-9
on same device 7-9, 8-28 to 8-29
select into/bulkcopy database option

12-12
on a separate device 7-7
size 3-26, 7-2, 12-13
synchronizing with database 7-3 to 7-5
system tables entries for B-40 to B-41
thresholds and 10-13
trunc log on chkpt option and 12-12 to

12-13, 12-25
truncating 8-28 to 8-30
unlogged commands 7-21

Transactions
See also Locks; Transaction logs
close on endtran option 13-13
deadlock resolution 13-20
default isolation level 13-12
definition 7-2
error (Level 13) 11-8
isolation levels 12-7
locking 13-2
long-running 7-3
recovery and 7-3
in SMP sites 14-7

Transact-SQL
reserved words A-1 to A-2

Transferring ownership. See Database
objects, ownership

Translation of character sets. See
Character set conversion

@@transtate global variable 12-18
Triggers

See also Database objects; Stored pro-
cedures

auditing execution of 16-13 to 16-14
indirect references to objects and 16-11
nested 12-22, 12-34
object dependencies and B-22
permissions and 5-28
self recursion 12-6
set commands in 12-8
set parseonly restriction 12-5

set showplan restriction 12-6
system tables entries for B-15, B-40 to

B-41, B-42
trunc log on chkpt database option 12-12 to

12-13, 12-25
truncate table command

auditing use of 16-9
Truncation

set string_rtruncation and 12-7
Trusted mode, remote logins and 15-9
Tuning, database. See Performance
Tutorial for creating segments 3-44 to

3-48
Two Phase Commit Probe Process B-36

U
Underlying tables. See Tables,

underlying
UNIX platforms, raw disk partition 3-9
Unlogged commands 7-21
Unmirroring devices. See Disk mirroring
Untrusted mode, remote logins and

15-10
update command

auditing use of 16-11
transaction log and 3-26, 7-2

Update locks 13-7
deadlocks and 13-21

update statistics command 12-18 to 12-19
Updating

See also Changing
allow updates database option and recon-

figure with override configuration
variable 1-6, 12-24

current transaction log page 3-28
direct to system tables 1-6, 12-24, B-3
indexes 12-18 to 12-19
stored procedures and 5-23
system procedures and B-3
system tables 1-6, 9-6, 12-24, B-3
text after character set change 6-14,

17-10 to 17-11
upgrade version number 12-35

System Administration Guide 35

SYBASE SQL Server Release 10.0

Upgrade, recovery after 9-9
us_english language 12-4, 12-35, 18-5,

18-7, B-31
Usage statistics 4-22
use command

auditing use of 16-9
user connections configuration variable

12-21, 12-27 to 12-29
User databases

See also Databases; Permissions
automatic recovery and 7-6
creation process 3-22
master database control of 1-8
system tables for 1-10
user-defined characters (Gaiji) 18-3
user-defined messages 11-6

User errors 11-6, 11-7 to 11-9
User groups. See Groups; "public" group
User IDs 5-5

comparing after backup and recovery
7-23, 9-15

finding 4-21
number 1, Database Owner 1-6

User mistakes. See Errors; Severity levels
User names 4-21, 5-10

changing 4-14
character set conversions and 18-5
finding 4-21
preferences 4-6

User objects. See Database objects
User segments, creating 3-44 to 3-48

See also Segments
user_id system function 4-22
user_name system function 4-22
Users

See also Aliases; Groups; Logins;
Remote logins

added, and recovery of master 9-16
adding 4-1 to 4-6, 4-6 to 4-9
aliases 4-16
auditing 16-7 to 16-8
currently on database 4-19
currently on server 4-19
dropped, and recovery of master 9-16

dropping from databases 4-11
dropping from groups 4-16
dropping from servers 4-10
errors by 11-6, 11-7 to 11-9
guest 4-7, 5-8, B-59
IDs 4-21, 5-5
impersonating (setuser) 5-8
information on 4-19 to 4-24, 4-24
multiple, and performance 12-44
names of 18-5
permissions to all or specific 5-16, 5-22
remote 15-6 to 15-9
single-user mode 12-12, 12-26
sysloginroles table B-35
syslogins table B-36 to B-37
system tables entries for B-36 to B-37,

B-59
sysusers table B-59
user connections and 12-28
views for specific 5-21
visiting 4-9

Users, object. See Database object
owners

Utility commands
character sets and 18-5

V
Variable-length columns

offset B-13
Variables

in error messages 11-3
vdevno option

disk init 3-9
Verification, user-access 15-5, 15-10
@@version global variable 12-18
Views

See also Database objects
auditing use of 16-7, 16-10 to 16-13
dependent 5-24
indirect references to 16-11
object dependencies and B-22
ownership chains 5-24
permission checking and 16-11

36 Index

SYBASE SQL Server Release 10.0

permissions on 5-3, 5-9, 5-14, 5-20 to
5-23

pubs2 C-19
security and 5-20
system tables entries for B-13, B-15,

B-40 to B-41, B-42
Virtual address 3-10
Virtual device number 3-12, 3-35
Virtual page numbers 3-10
Virtual Server Architecture 14-1
Virtual tables B-3
Visitor accounts 4-9
Volume handling 8-12
vstart column 3-35
vstart option

disk init 3-10

W
waitfor mirrorexit command 3-19
Weekday date value

first 12-4
Western European Language Module

17-2
Window of vulnerability 12-26
Windowing systems 12-29
with fillfactor option, create index 12-32
with grant option option, grant 5-14
with no_error option, set char_convert 18-6
with no_log option, dump transaction 8-29
with no_truncate option, dump transaction

8-27 to 8-28
with nowait option, shutdown 11-16, 11-17
with override option

create database 3-28
reconfigure 1-6, 12-24, 12-26

with truncate_only option, dump transaction
8-28, 8-29

Write-ahead log. See Transaction logs
writes option, disk mirror 3-17
writetext command

database dumping and 7-21
select into/bulkcopy database option

12-12

X
.xlt files 17-2

